Chapter 3 Part 2: Random variables

Jess Kunke

MATH/STAT 394: Probability I (Summer 2022 A-term)

Outline

[Mid-course feedback, midterm example](#page-2-0)

[Wrap up cdfs \(with practice\)](#page-7-0)

[\(Great\) Expectations](#page-16-0)

[Variance](#page-30-0)

[Median and quantiles](#page-47-0)

Outline

[Mid-course feedback, midterm example](#page-2-0)

[Wrap up cdfs \(with practice\)](#page-7-0)

[Median and quantiles](#page-47-0)

Thank you for the feedback!

- \blacktriangleright Most said pace is fast
	- \blacktriangleright Definitely! Accelerated course is very fast
	- \blacktriangleright I will try to speak more slowly, leave slides up longer
- \blacktriangleright Most said homework difficulty is fine
- \triangleright Study groups have been helpful
- ▶ Connecting new problems to ones we've already seen has been helpful

Midterm: updated time

- This Friday July 8th, 9-10am, CMU 230
- \triangleright Bring one or more pens/pencils and a half-sheet of paper with whatever handwritten notes you'd like
- \blacktriangleright I will provide blank paper and the exam instructions
- \blacktriangleright Not all problems are equal length

Midterm work example

Two fair dice are rolled. What is the conditional probability that at least one lands on 6 given that the dice land on different numbers?

Fine:

$$
P(\text{at least one 6} \mid \text{different}) = \frac{P(\text{at least one 6}, \text{different})}{P(\text{different})}
$$

=
$$
\frac{P\{1st = 6, 2nd \neq 6\} + P\{1st \neq 6, 2nd = 6\}}{5/6}
$$

=
$$
\frac{(1/6) \cdot (5/6) + (1/6) \cdot (5/6)}{5/6}
$$

=
$$
\frac{1}{3}.
$$
 (this step not necessary unless specified)

Midterm work example

Two fair dice are rolled. What is the conditional probability that at least one lands on 6 given that the dice land on different numbers?

Not enough:

$$
A = \{a \in (e \wedge e) \wedge e \wedge e \} \nB > P(A | B) = \frac{P(A \cap B)}{P(B)} \wedge \text{for } e \wedge e \vee e
$$
\n
$$
= \frac{1}{3}.
$$

Outline

[Mid-course feedback, midterm example](#page-2-0)

[Wrap up cdfs \(with practice\)](#page-7-0)

[Median and quantiles](#page-47-0)

Key integrals and derivatives
 $\beta_0 \nmid \beta_1 \times \nmid \beta_2 \times \gamma^2 \nmid \cdots$ Polynomials $\frac{d}{dx} x = 1$ $\frac{d}{dx} x^2 = 2x$ $\frac{d}{dx}$ $ax^{k} = ax^{k+1}$ $\int_{X}^{3} dx = ?$ $\frac{d}{dx} x^{4} = 4x^{3} \Rightarrow \int_{a}^{b} x^{3} dx = \left[\frac{1}{4} x^{4} \right]_{x=a}^{x=b}$

Exponential
 $\frac{d}{dx} e^{ax} = \alpha e^{ax}$ $\int_{c}^{b} e^{ax} dx = \left[\frac{1}{a} e^{ax} \right]_{a}^{x=b}$

pmfs, pdfs, and cdfs

Discrete RVs

 \blacktriangleright Probability mass function (pmf)

 $p(k) = P(X = k)$ for all possible values *k* of *X*

 \triangleright Cumulative distribution function (cdf)

$$
F(s) = P(X \leq s) = \sum_{k: k \leq s} P(X = k)
$$

Continuous RVs

 \blacktriangleright Cumulative distribution function (cdf)

$$
F(s) = P(X \leq s) = \int_{-\infty}^{s} f(x) dx \text{ for all } s \in \mathbb{R}
$$

► Probability density function (pdf)
\n
$$
f \text{ such that } P(X \le s) = \int_{-\infty}^{s} f(x) dx \text{ for all } s \in \mathbb{R}
$$

Other RVs

 \triangleright Cumulative distribution function (cdf)

$$
F(s) = P(X \leq s) \quad \text{for all } s \in \mathbb{R}
$$

Do discrete and continuous RVs partition the space of possible RVs?

If F is piece-wise constant

 \implies it is the cdf of a **discrete RV**

 \blacktriangleright If *F* is continuous

 \implies it is the cdf of a continuous RV

- If F is discontinuous and not piece-wise constant \implies neither discrete nor continuous RV
	- \triangleright but we can still compute probabilities using the cdf
	- \blacktriangleright e.g. mixtures of distributions

The cdf exists for any RV

Try at home

- \triangleright Go through the examples we covered in lecture last time
- \triangleright Pick some of the simpler distributions we've covered (flipping a coin, rolling a fair die, binomial, uniform, exponential)
	- \blacktriangleright Graph and write the pmf/pdf and cdf
	- \triangleright Do it in whatever order makes sense to you, then try doing it in a different order
	- \blacktriangleright How could you tell the cdf from the pmf/pdf?
	- \blacktriangleright How could you tell the pmf/pdf from the cdf?

Why did we introduce the cdf?

Theoretical reason

- \triangleright We only need $P(X \leq t)$ for any *t* to compute any prob. measure
- \blacktriangleright Therefore the cdf is sufficient for our purposes

Why did we introduce the cdf?

Theoretical reason

- \triangleright We only need $P(X \leq t)$ for any *t* to compute any prob. measure
- \blacktriangleright Therefore the cdf is sufficient for our purposes

Practical reason

- \triangleright The cdf itself is a prob. so we can use classical rules of prob. to manipulate it
- \triangleright On the other hand the pdf is just a function and sometimes it is not practical or does not exist

Why did we introduce the cdf?

 $\rho(M\neg t) \xrightarrow{\qquad \qquad \searrow \qquad \searrow} c d f \xrightarrow{\text{denv}}$

Example

 $\rho(\mu \in t)$ Let $X \sim \text{Expo}(\lambda)$, $Y \sim \text{Expo}(\mu)$ be independent.
What is the pdf of $M = \min(X, Y)$? What is the pdf of $M = min(X, Y)$? Recall that $F_X(t) = 1 - e^{-\lambda t}$. $= e^{-\lambda t}$ Tips: ▶ Notice that event $\{\min\{X, Y\} > t\}$ is equivalent to $\{X > t\} \cap \{Y > t\}$ \blacktriangleright Find the cdf of M, then use it to find the pdf What is the name of the distribution of $M? \implies M \sim$ ρ $(M > t) = P$ $(mh(x, y) > t) = P(X > t, Y > t)$ X, Y independent $= P(X>t) P(Y>t)$ $= e^{-\lambda t} e^{-\mu t}$ $E_M(t) = e^{-\lambda E} e^{-\mu E}$
 $E_M(t) = e^{-\lambda E} e^{-\mu E}$
 $\therefore P(M \in E) = 1 - e^{-\lambda E}$
 $\Rightarrow P_M(t) = \frac{1}{2} \frac{1}{2} P(M \in E) = \frac{1}{2} \frac{1}{2} P(M \in E)$
 $\Rightarrow P_M(t) = \frac{1}{2} \frac{1}{2} P(M \in E) = \frac{1}{2} \frac{1}{2} P(M \in E)$

Wikipedia pages on probability distributions are a great resource!

- \triangleright Check out the distributions from class (binomial, uniform, exponential, etc.)
- \triangleright Shows pmf/pdf, cdf, and lots of other properties
- \blacktriangleright Presents definitions and applications, connections to other distributions, and sometimes some history
- ▶ You can explore some new distributions you haven't seen before too

Outline

[Mid-course feedback, midterm example](#page-2-0)

[Wrap up cdfs \(with practice\)](#page-7-0)

[\(Great\) Expectations](#page-16-0)

[Median and quantiles](#page-47-0)

Expectation

Motivation

- \triangleright Given a RV, we have numerous tools to compute probabilities
- \triangleright We said that we also sometimes want to know what kind of result we expect on average, a "typical value" for a given RV
- \triangleright e.g. if you flip a coin n times, what is the average number of tails you should get?
- In probability, this "average" number is called an expectation and it is a central object

Intuition

Example

At a casino, suppose

- \triangleright you lose 1\$ 90% of the time,
- \triangleright you gain 10\$ 9% of the time, and
- vou gain 100\$ 1% of the time.

What is your expected net gain?

Intuition

Example

At a casino, suppose

- \triangleright you lose 1\$ 90% of the time,
- \triangleright you gain 10\$ 9% of the time, and
- vou gain 100\$ 1% of the time.

What is your expected net gain?

 \blacktriangleright First understand that the average is a number not a probability

 \blacktriangleright Then

expected net gain =
$$
\frac{(-1)}{\sqrt{100}}
$$
 +10 $\cdot \frac{9}{100}$ +100 $\cdot \frac{1}{100}$ = 1

Expectation of a discrete RV

Definition

The expectation or mean of a discrete random variable *Y* is defined by

$$
E(Y) = \sum_{k} kP(X = k).
$$

Expectation is often written with square brackets, *E*[*Y*].

Example

What is the expectation of $X \sim \text{Ber}(p)$?

$$
E(x) = 0 \cdot (1-\rho) + 1 \cdot \rho = \rho.
$$

Expectation of a discrete RV

Definition

The expectation or mean of a discrete random variable *Y* is defined by

$$
E(Y) = \sum_{k} kP(X = k).
$$

Expectation is often written with square brackets, *E*[*Y*].

Example

What is the expectation of $X \sim \text{Ber}(p)$? $\Rightarrow \Box \times \Box = \Diamond$.

Link between expectation and probability

 \triangleright For an event *A* ⊂ Ω the **indicator RV** of *A* (denoted $\mathbb{I}_{A}(\omega)$ or *I_A*(ω)) is

$$
\mathbb{1}_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A, \\ 0 & \text{if } \omega \notin A. \end{cases}
$$

▶ \mathbb{I}_A ~ Ber($P(A)$) (since $P(\mathbb{I}_A = 1) = P(\omega \in A)$)

 $E[\mathcal{1}\{\mathcal{W}\in\mathcal{A}\}] = P(\mathcal{A})$

 \blacktriangleright Therefore

Expectation of a continuous RV

For continuous random variables, we replace the sum over the pmf with an integral over the pdf:

Definition

Suppose *Y* is a continuous random variable with pdf *f* . Then the expectation or **mean** of *Y* (often denoted μ_Y) is defined by

$$
E[Y] = \int_{-\infty}^{\infty} yf(y)dy.
$$

Comments on expectations
The cutes weber seen had finite expectations.

 \blacktriangleright Expectation can be infinite or undefined (see book examples)

Comments on expectations

- \blacktriangleright Expectation can be infinite or undefined (see book examples)
- \blacktriangleright Expectation can be seen as the "center of mass" of the distribution

Figure: Figure 3.8 from the textbook

Expectation of a function of a RV

If we know the distribution of a RV *X* and now we are interested in a RV $Y = g(X)$ for some function *g*, do we have to compute the distribution and expectation from scratch? No.

Theorem

Let X be a RV that takes values in X and $g: \mathcal{X} \to \mathbb{R}$ *be some function.*

 $E[g(X)] = \sum g(k)p(k)$ *if* X *is discrete with pmf p,* $k \in \mathcal{X}$ $E[g(X)] = \int^{+\infty}$ $g(x)f(x)$ dx *if* X *is continuous with pdf* f . $-\infty$ Proof of discrete case: $W = \begin{cases} -1 & x = 1, 2, 3 \\ 1 & x = 4 \\ 3 & x = 5, 6 \end{cases} \times \begin{cases} 9 \\ 1 \\ 2 \end{cases}$ $E[g(x)] = \sum_{y} y P(g(x) = y)$

Later, we will cover how to derive the distribution of *Y* from the dist. of *X*

 $E[g(x)] \equiv \sum_{y} y P(g(x) = y)$ $= \sum_{y} \sum_{k=1}^{n} y_{k} \rho(x=k)$ $gl(b) = 9$ = $\sum_{y} \sum_{k=1}^{n} g(k) P(x=k)$ $=\sum_{k\in\mathcal{X}}g_{k}(k)\rho(k=k).$

Linearity of expectation

Theorem

- 1. *For any random variable X* and any $a, b \in \mathbb{R}$, $E[aX + b] = aE[X] + b$.
- 2. *If X, Y are random variables on the same probability space, then* $E[X + Y] = E[X] + E[Y]$.
- 3. *Let X*1*, ..., Xⁿ be n random variables defined on the same probability space and g*1*, ..., gⁿ be n functions. Then*

 $E[g_1(X_1) + ... + g_n(X_n)] = E[g_1(X_1)] + ... + E[g_n(X_n)]$.

Linearity of expectation

Theorem

- 1. *For any random variable X and any a*, $b \in \mathbb{R}$, $E[aX + b] = aE[X] + b$.
- 2. *If X, Y are random variables on the same probability space, then* $E[X + Y] = E[X] + E[Y]$.
- 3. *Let X*1*, ..., Xⁿ be n random variables defined on the same probability space and g*1*, ..., gⁿ be n functions. Then*

$$
E[g_1(X_1)+...+g_n(X_n)]=E[g_1(X_1)]+...+E[g_n(X_n)].
$$

Example

Using the linearity of expectation, compute the expectation of $X \sim Bin(n, p)$.
 $X \sim Bin(n, \rho) \implies X = \sum_{i=1}^{n} Y_i + Y_i$ is $Der(p)$, we know $E[Y_i] = P$ $E[x] = E\left[\sum_{i=1}^{n} Y_i\right]$ I then ity of exp. $=\sum_{n}\mathbb{E}[Y_{n}]$ $=$ np.

Linearity of expectation

Example

Anne has three 4-sided dice, two 6-sided dice and one 12-sided die. All the dice are fair and numbered 1, 2, ..., *n* for $n = 4, 6$, or 12. She rolls all the dice and

adds up the numbers showing. What is the expected value of the sum?
Let A_1 , A_2 , A_3 represent the numbers showly on the 4-sided dice B, B2 represent the rolls of the G-sided dice C1 for the 12-sided die. Let $x = A_1 + A_2 + A_7 + B_1 + P_2 + C_1$. $E[C_i] = 6.5$ $E[A_c] = 2.5$ $E[B_c] = 3.5$ LAC = 2.8 LDC
 $(L\frac{1}{9}+2\frac{1}{5}+7\frac{1}{9}+4\frac{1}{9})$ Bq (in of exp.)
 $R = 3$ $C = 3$ $E[X] = SELA:] + A E[B:] + E[X]$ $=3(25)+2(25)+6.5$ $\frac{1+2+7+4}{4}$ $=$ 21

Outline

[Mid-course feedback, midterm example](#page-2-0)

[Wrap up cdfs \(with practice\)](#page-7-0)

[Variance](#page-30-0)

[Median and quantiles](#page-47-0)

Motivation

- \triangleright The expectation summarizes the RV to a single point
- \triangleright Generally the distribution should gather around the mean, but how much?
- \triangleright The variance informs us about the dispersion of the RV around the mean

Definition

The **variance** of a random variable X with mean μ is defined as

 $Var(X) = E\left[(X - \mu)^2 \right]$ $\mathsf{Var}(X)$ is often denoted σ^2_X .

 $E[Y]$

Definition

The **variance** of a random variable X with mean μ is defined as

$$
\text{Var}(X) = \mathsf{E}\left[(X - \mu)^2 \right]
$$

 $\mathsf{Var}(X)$ is often denoted σ_X^2 .

The square root σ_X of the variance is called the **standard deviation**.

Definition

The **variance** of a random variable X with mean μ is defined as

$$
\text{Var}(X) = \mathsf{E}\left[(X - \mu)^2 \right]
$$

 $\mathsf{Var}(X)$ is often denoted σ_X^2 .

The square root σ_X of the variance is called the **standard deviation**. In terms of pmf or pdf, we have that

$$
\operatorname{Var}(X) = \sum_{k \in \mathcal{X}} (x - \mu)^2 p(k)
$$

$$
\operatorname{Var}(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx
$$

p(*k*) for a discrete RV with pmf *p,*

f (*x*)*dx* for a continuous RV with pdf *f .*

Definition

The **variance** of a random variable X with mean μ is defined as

$$
\text{Var}(X) = \mathsf{E}\left[(X - \mu)^2 \right] = \mathsf{E}\left[\left(\chi - \mathsf{E}[\chi] \right)^2 \right]
$$

 E^{x}

 $\mathsf{Var}(X)$ is often denoted σ^2_X . The square root σ_X of the variance is called the **standard deviation**. In terms of pmf or pdf, we have that

$$
Var(X) = \sum_{k \in \mathcal{X}} (x - \mu)^2 p(k)
$$
 for a discrete RV with pmf p,

$$
Var(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx
$$
 for a continuous RV with pdf f.

Note:

- \triangleright Variance is defined through the expectation of a function of the RV
- \triangleright This is true of many characteristics of a RV: expectation is our main tool
- \triangleright As with expectation, the variance may be finite, infinite or undefined

Definition

The **variance** of a random variable *X* with mean μ is defined as

$$
\mathsf{Var}(X) = \mathsf{E}\left[\left(X-\mu\right)^2\right]
$$

 $\mathsf{Var}(X)$ is often denoted σ_X^2 .

The square root σ_X of the variance is called the **standard deviation**. In terms of pmf or pdf, we have that

$$
Var(X) = \sum_{k \in \mathcal{X}} (x - \mu)^2 p(k)
$$
 for a discrete RV with pmf p,
\n
$$
Var(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx
$$
 for a continuous RV with pdf f.
\nExample
\nIf $X \sim Ber(p)$, what is $Var(X)$?
\n
$$
Var(X) = \mathbb{E}[x] = P
$$
\n
$$
Var(X) = \mathbb{E}[(x - p)^2] = (0 - p)^2 \cdot (1 - p) + (1 - p)^2 P
$$
\n
$$
= p^2 - p^2 + p - 2p^2 + p^3
$$
\n
$$
= p - p^2 = p(1 - p)
$$
\n
$$
= p^2 - p^2 = p(1 - p)
$$

Variance: another way to compute

Sometimes this is an easier way to compute the variance:

Lemma

The variance of a RV X can also be expressed as

$$
Var(X) = E[X^{2}] - E[X]^{2}.
$$

Proof: \forall ar $(x) = E[(x - E[x])^{2}]$

$$
= E[x^{2} - 2xE[x] + E[x]^{2}]
$$

$$
= E[x^{2}] - 2E[x]E[x] + E[x]^{2}
$$

$$
= E[x^{2}] - 2(E[x])^{2} + (E[x])^{2}
$$

$$
= E[x^{2}] - 2(E[x])^{2} + (E[x])^{2}
$$

$$
= E[x^{2}] - (E[x])^{2}.
$$

 \ln of exp

 $E[3] = 3$

Moments

Definition

$$
E[x^2, E[x^2]
$$

The nth moment of a RV *X* is

The nth centered moment of a RV *X* is

$$
\mathsf{E}[(X-\mathsf{E}[X])^n]
$$

 $E[Xⁿ]$.

 $E[(x-E[x])^2]$

Moments

Definition

The nth moment of a RV *X* is

 $E[Xⁿ]$.

The nth centered moment of a RV *X* is

 $E[(X - E[X])ⁿ]$

Notes

 \blacktriangleright 1st moment: mean

- \triangleright 2nd moment: mean square
- \triangleright 2nd centered moment: variance
- \triangleright 3rd centered moment: kurtosis
	- \blacktriangleright Tells us about asymmetry of RV
	- \triangleright 0 if RV is symmetric
- \blacktriangleright Moments are explored in more detail in MATH/STAT 395

Variance properties

$$
\mathsf{d} \mathsf{x} \in \left(\begin{smallmatrix} \mathsf{d} & & \mathsf{d} \end{smallmatrix}\right)
$$

Motivation

I Variance is **not linear!** Instead we have the following property:
 $\chi \sim \text{Unif}(\delta, 4)$ $x \sim$ Unif (o, 4) Lemma *For a RV X and a,* $b \in \mathbb{R}$ *.* 10 \overline{u} $Var(aX + b) = a^2 Var(X)$. Proof: $Var (a \times Fb) = E [(a \times Fb - E [a \times Fb])^2]$ $V = E[(a \times 16 - aE[x] - b)^{2}]$ $= E[\alpha^{2}(x-E[x])^{2}]$ \uparrow = $a^2 E[(x-E[x])^2] = a^2 Var(x)$ Takeaways: \triangleright Adding a constant to the RV does not change the variance

$$
\blacktriangleright \sigma_{aX+b} = \sqrt{\text{Var}(aX+b)} = a\sigma_X
$$

In Standard deviation σ has the same 'units' as the RV or the mean, while variance σ^2 has squared units

Null variance

Motivation

 \triangleright The following theorem formalizes the intuition that if a RV does not vary (i.e. $Var(X) = 0$) then it must be a constant

Theorem

For a RV X, Var(*X*) = 0 *if and only if* $P(X = a) = 1$ *for some constant* $a \in \mathbb{R}$ *.*
Proof: Proof:

1)
$$
\leftarrow
$$

\n $\rho(x=a) = 1 \implies E[x] = a$, $Var(x) = 0$.
\n2) \implies $(divate)$
\n $Var(x) = 0 \implies \sum_{k} (k - \mu)^2 P(x=k) = 0$
\n $\implies (k - \mu)^2 P(x=k) = 0 \implies \forall k$.
\n $\implies k = \mu$ or $P(x=k) = 0$. For each k.
\n $\implies p(x=k) > 0$ for only the value of k.
\n26/35

Expectation of product of independent RVs

Remember:

 \blacktriangleright X_1, \ldots, X_n are independent if for any (Borel) sets $B_1, \ldots, B_n \in \mathbb{R}$,

 $P(X_1 \in B_1, \ldots, X_n \in B_n) = P(X_1 \in B_1) \ldots P(X_n \in B_n)$.

For an indicator RV, $E[\mathbb{1}_A] = P(A)$ for $A \subseteq \Omega$

Expectation of product of independent RVs

Remember:

 \blacktriangleright X_1, \ldots, X_n are independent if for any (Borel) sets $B_1, \ldots, B_n \in \mathbb{R}$,

$$
P(X_1 \in B_1,\ldots,X_n \in B_n) = P(X_1 \in B_1) \ldots P(X_n \in B_n).
$$

For an indicator RV, $E[\mathbb{1}_A] = P(A)$ for $A \subseteq \Omega$

Another characterization of independent RV:

► Denote
$$
h_i(x_i) = \begin{cases} 1 & \text{if } x \in B_i \\ 0 & \text{if } x \notin B_i \end{cases}
$$

\n► Note that $h_1(x_1) \dots h_n(x_n) = \begin{cases} 1 & \text{if } x_1 \in B_1, \dots, x_n \in B_n \\ 0 & \text{otherwise} \end{cases}$

 \blacktriangleright Previous definition can be written as

$$
E[h_1(X_1)...h_n(X_n)] = E[h_1(X_1)]...E[h_n(X_n)].
$$

In Namely, for independent X_1, \ldots, X_n , the expectation of a product of some functions of RV is equal to the product of the expectation.

Expectation of product of independent RV

Motivation:

As any function can be decomposed/approximated by indicator RVs, we get the following theorem:

Theorem

 X_1, \ldots, X_n are independent if and only if for any functions h_1, \ldots, h_n

$$
E[h_1(X_1)\ldots, h_n(X_n)]=E[h_1(X_1)]\ldots E[h_n(X_n)].
$$

Corollary

If X, Y are independent, then

$$
Var(X + Y) = Var(X) + Var(Y).
$$

Questions:

- If *X*, *Y*, *Z* are independent, is $E[XYZ] = E[X]E[Y]E[Z]$?
- If $E[XYZ] = E[X]E[Y]E[Z]$, are *X*, *Y*, *Z* independent? Not necessarily

Variance of independent RV

The variance result can be generalized as follows.

Theorem *If X*1*,..., Xⁿ are independent, then*

$$
Var(X_1 + \ldots + X_n) = Var(X_1) + \ldots + Var(X_n).
$$

Example

What is the variance of $X \sim \text{Bin}(n, p)$?

$$
\begin{aligned}\n\text{Var } \times &= \sum_{i=1}^{n} \text{Var} \, (\forall i) \qquad (\forall i \, \text{index}). \\
&= \sum_{i=1}^{n} \, \rho \, (1-\rho) \\
&= \, \text{Var} \, (1-\rho).\n\end{aligned}
$$

$$
29/35
$$

 $Var(Y_{i}) = p(1-p).$

Outline

[Mid-course feedback, midterm example](#page-2-0)

[Wrap up cdfs \(with practice\)](#page-7-0)

[Median and quantiles](#page-47-0)

Median

Motivation

- \triangleright The expectation often gives a good summary of a RV
- \triangleright Yet, if the RV has some abnormally large values, the expectation may be a bad indicator of where the center of the distribution lies
- \blacktriangleright Another indicator is often used: the median that tells us where to split the distribution of *X* to have equal mass on the left and right sides of the median

Median of a continuous RV

Definition

The median of a continuous RV *X* is a value *m* s.t.

$$
P(X \ge m) = P(X \le m) = 1/2
$$

Median of a continuous RV

Definition

The median of a continuous RV *X* is a value *m* s.t.

$$
P(X \ge m) = P(X \le m) = 1/2
$$

Example

At a call center, a phone call arrives on average every 5 min (model it as an exponential RV). What is the median time to wait for a call?

- In The pdf is $f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$ and 0 otherwise with $\lambda = 1/5$ (since $E[X] = 1/\lambda = 5$.
- I To compute the median, it suffices to use the cdf. We want *m* such that $F_X(m)=1/2$.
- If Since $F_X(t) = e^{-\lambda t}$, we get that $m = -\log(1/2)/\lambda \approx 3.47$.

Median of discrete RV

$$
\rho(x=y) = \rho(x=0) = \frac{1}{3}
$$

Example

Consider *X* uniformly distributed on $\{-1, 0, 1\}$ (discrete uniform). How can we define a median for *X*?

- Here there does not exist *m* s.t. $P(X \le m) = P(X \ge m) = 1/2$.
- **For example** $P(X \le 0) = 2/3$ **and** $P(X \ge 0) = 2/3$ **.**
- \triangleright The problem is that here 0 takes some probability mass so we need to slightly change the definition of a median in the discrete case

Median of discrete RV

Example

Consider *X* uniformly distributed on $\{-1, 0, 1\}$ (discrete uniform). How can we define a median for *X*?

- Here there does not exist *m* s.t. $P(X \le m) = P(X \ge m) = 1/2$.
- For example $P(X \le 0) = 2/3$ and $P(X \ge 0) = 2/3$.
- \blacktriangleright The problem is that here 0 takes some probability mass so we need to slightly change the definition of a median in the discrete case

Definition

Generally, a median of a RV *X* is any value *m* such that

$$
P(X \ge m) \ge 1/2 \qquad P(X \le m) \ge 1/2
$$

So in the above example, 0 would be a median.

Example

Let *X* be uniformly distributed on $\{-100, 1, 2, 3, \ldots 9\}$. So *X* has a prob. dist.

 $P(X = -100) = 1/10$, $P(X = k) = 1/10$ for $k \in \{1, \ldots 9\}$

What are the expectation and the median of *X*?

$$
\blacktriangleright \ \mathsf{E}[X] = -100 \cdot 1/10 + (1 + 2 + \ldots + 9) \cdot 1/10 = -5.5
$$

 \triangleright On the other hand,

$$
P(X \le 4.5) = p(-100) + p(1) + p(2) + p(3) + p(4) = 1/2
$$

$$
P(X \ge 4.5) = p(5) + \ldots + p(9) = 1/2
$$

- \triangleright So 4.5 is a median for X
- Any $m \in [4, 5]$ is a median for X; we usually take the mid-point of the interval
- ▶ A median (e.g. 4.5) illustrates much better than the mean (-5.5) the fact that 90% of the possible values are in $\{1,\ldots,9\}$
- \blacktriangleright The mean better represents the center of (probability) mass

Motivation

- \blacktriangleright Let's generalize the median
- \triangleright Typically we would like to know if some observation of our RV is rare or not
- In Namely we would like to have access to a value x, such that if $X \geq x$ then the probability of this observation is small
- \blacktriangleright This is formalized with the definitions of quantiles

Definition

Given $0 \le p \le 1$ (e.g. $p = 90/100$), the **pth** quantile of a continuous RV X is any value *x^p* such that

$$
P(X \leq x_p) = p \qquad P(X \geq x_p) = 1 - p
$$

Definition

Given $0 \le p \le 1$ (e.g. $p = 90/100$), the **pth quantile** of a continuous RV X is any value *x^p* such that

$$
P(X \leq x_p) = p \qquad P(X \geq x_p) = 1 - p
$$

More generally the **pth** quantile of a RV X is any value x_p such that

$$
P(X \leq x_p) \geq p \qquad P(X \geq x_p) \geq 1 - p.
$$

- \blacktriangleright $p = 1/2$: we retrieve the median! (i.e. median $= 0.5$ th quantile or 50th percentile)
- \blacktriangleright $p = 90/100$: the 90th quantile tells us that there is less than 10% chance of observing a value greater than *x^p*
- In the second definition, we want to take into account values of x_p that could have a non-zero mass but still satisfy the idea of a quantile.

Definition

Given $0 \le p \le 1$ (e.g. $p = 90/100$), the **pth quantile** of a continuous RV X is any value *x^p* such that

$$
P(X \leq x_p) = p \qquad P(X \geq x_p) = 1 - p
$$

More generally the **pth** quantile of a RV X is any value x_p such that

$$
P(X \leq x_p) \geq p \qquad P(X \geq x_p) \geq 1 - p.
$$

- \blacktriangleright $p = 1/2$: we retrieve the median! (i.e. median = 0.5th quantile or 50th percentile)
- \triangleright $p = 90/100$: the 90th quantile tells us that there is less than 10% chance of observing a value greater than *x^p*
- In the second definition, we want to take into account values of x_p that could have a non-zero mass but still satisfy the idea of a quantile.

Definition

Given $0 \le p \le 1$ (e.g. $p = 90/100$), the **pth quantile** of a continuous RV X is any value *x^p* such that

$$
P(X \leq x_p) = p \qquad P(X \geq x_p) = 1 - p
$$

More generally the **pth** quantile of a RV X is any value x_p such that

$$
P(X \leq x_p) \geq p \qquad P(X \geq x_p) \geq 1 - p.
$$

- \blacktriangleright $p = 1/2$: we retrieve the median! (i.e. median = 0.5th quantile or 50th percentile)
- \triangleright $p = 90/100$: the 90th quantile tells us that there is less than 10% chance of observing a value greater than *x^p*
- In the second definition, we want to take into account values of x_p that could have a non-zero mass but still satisfy the idea of a quantile.

Definition

Given $0 \le p \le 1$ (e.g. $p = 90/100$), the **pth quantile** of a continuous RV X is any value *x^p* such that

$$
P(X \leq x_p) = p \qquad P(X \geq x_p) = 1 - p
$$

More generally the **pth** quantile of a RV X is any value x_p such that

$$
P(X \leq x_p) \geq p \qquad P(X \geq x_p) \geq 1 - p.
$$

- \blacktriangleright $p = 1/2$: we retrieve the median! (i.e. median = 0.5th quantile or 50th percentile)
- \triangleright $p = 90/100$: the 90th quantile tells us that there is less than 10% chance of observing a value greater than *x^p*
- In the second definition, we want to take into account values of x_p that could have a non-zero mass but still satisfy the idea of a quantile.