
Chapter 4 and beyond: Learning about distributions
from finite data
Part 3, Fri 15 July

Jess Kunke

MATH/STAT 394: Probability I (Summer 2022 A-term)



Outline

Final exam details and review

Further notes on the normal approximation
Continuity correction
Confidence intervals
Polling and sampling without replacement

Poisson approximation to the binomial

Additional details



Outline

Final exam details and review

Further notes on the normal approximation
Continuity correction
Confidence intervals
Polling and sampling without replacement

Poisson approximation to the binomial

Additional details



Final exam logistics

▶ Next Wed July 20th, 1.5 hours starting at 9am

▶ In person in CMU 230 (our classroom)

▶ Please bring your own pens, pencils, and/or erasers

▶ No calculators, books, phones, computers, etc.

▶ I will provide scratch/extra paper for you

▶ You can bring a one-sided 8.5x11 (or smaller) sheet of paper with
handwritten notes

▶ The exam is not explicitly cumulative (e.g. no urns with different color
balls and no Bayes, and the heavy lifting will be on the new concepts, but
you still need to know the basics about probability when dealing with coin
flips, sampling, etc)
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Simplifying and showing your work

▶ When computing the integrals, plug in the numbers and simplify as much
as you can; fully simplifying fractions is not necessary

▶ Show your steps, define your notation/variables

▶ Not all problems will require the same amount of steps/work, but there
should always be more you can show than simply the answer
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Exam tips

During the exam

▶ Skim through the exam to see what the problems probably involve

▶ Make sure you give some time to each problem; I can only give partial
credit for work that you show

Preparation:

▶ Practice problems are posted; they do not cover everything but they are
relevant practice for the exam

▶ Make sure to also review HW3, HW4, and lecture notes/examples

▶ I highly encourage modifying the homework and lecture problems and
trying to solve them; great learning tool as well as study method
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Final exam topics

Chapter 3:

▶ discrete and continuous RVs

▶ pmf vs pdf

▶ definition of cdf in general; properties of the cdf

▶ of the pmf, pdf, and cdf, which functions are probabilities?

▶ calculating cdf from pmf vs pdf, and vice versa

▶ computing probabilities of single values and of intervals (including when
the left or right endpoint is +/-infty)

▶ verifying that a function is a pdf; finding the normalization constant (C)

▶ be able to take derivatives/integrals of polynomials (a+ bx + cx2 + ...),
rational powers (xa/b) and exponentials (eax)

▶ expectation (definition, linearity, expectation of an indicator RV,
expectation of a transformation g(X ) of a RV X, expectation of a product
of independent RVs)

▶ variance (definition, alternative formulation as E[X 2]− E[X ]2, properties,
variance of a sum of independent RVs)
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Final exam topics

Distributions:

▶ Bernoulli, binomial, uniform, exponential, normal (standard and general),
Poisson (covered today)

Not covered:

▶ Median, quantiles, geometric, hypergeometric

▶ Lecture on Mon July 18th (additional topics)
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Final exam topics

Chapter 4 and beyond:

▶ deriving the pmf/pdf/cdf of Y = g(X ) if you know the distribution of X
(discrete vs continuous, invertible or not, cdf method)

▶ mean and variance of the sample mean

▶ Markov’s and Chebyshev’s inequalities (when/how to apply them, what
their limitations are)

▶ Weak Law of Large Numbers and its relationship to Chebyshev’s inequality

▶ computing probabilities from the normal distribution using its symmetry
and a table

▶ standardizing variables

▶ transforming a standard normal into a normal with mean mu and s.d.
sigma, and vice versa

▶ computing the probability that a variable is within some interval or within
so many standard deviations

▶ using the normal approximation for the binomial

▶ today’s material (continuity correction, confidence intervals, Poisson
approximation)
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Continuity correction

▶ Consider that you want to simply approximate P(Sn = k) for some fixed k.
What is the problem you’ll run into?

▶ The CLT (normal approximation) will not be useful as is, since you would
get something like

P(Sn = k) = P

(
an,k ≤ Sn − np√

np(1− p)
≤ an,k

)
≈ Φ(an,k)− Φ(an,k) = 0

for an,k = k−np√
np(1−p)

.

▶ To circumvent the issue, note that, since Sn only takes integer values,

P(Sn = k) = P(k − 1/2 ≤ Sn ≤ k + 1/2)

and we can rather apply the CLT on the right hand side to have something
meaningful
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Continuity correction

The method for continuity correction:

▶ If k1, k2 are integers, since Sn ∼ Bin(n, p) can only take integer values,
then

P(k1 ≤ Sn ≤ k2) = P(k1 − 1/2 ≤ Sn ≤ k2 + 1/2)

▶ Applying the CLT on the second interval,

P(k1−1/2 ≤ Sn ≤ k2+1/2) ≈ Φ

(
k2 + 1/2− np√

np(1− p)

)
−Φ

(
k1 − 1/2− np√

np(1− p)

)
▶ This correction gives better approximations

▶ Sometimes this correction is necessary or valuable, and sometimes it is
negligible
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Continuity correction

Example

We roll a pair of fair six-sided dice 10,000 times. Estimate the probability that
the number of times we get snake eyes (two ones) is between 280 and 300
using the continuity correction.
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From theory to practice

The thought process:

1. Collect some data
▶ e.g. repeat the flips of a coin

2. Make some assumptions about the data
▶ e.g. the flips are independent and identically distributed

3. Consider a theoretical model for your experiment
▶ e.g. the flips are Ber(p) RVs with some unknown p

4. Use the theory to assess what the unknown parameter p could be given
your data
▶ e.g. use the CLT to assess how far the empirical frequency of success is

from the unknown probability of success p

→ Here we will develop the last part, i.e., how to assess what could be the true
probability of success p.
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Confidence intervals: motivation

We return to a question we’ve been exploring over the past few lectures:

▶ Suppose we have a biased coin and we want to know p = P(getting a tail)

▶ How can we know if our observed frequency of tails p̂ = Sn
n
= X1+...+Xn

n

is a good estimate of p?

▶ We want to estimate for some ε > 0 fixed, the prob. P(|p̂ − p| ≤ ε)
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Confidence Intervals

Let us reformulate P(|p̂ − p| ≤ ε) in terms of the central limit theorem:
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Confidence Intervals

Example

How many times should you flip a coin with unknown prob. of success p such
that the estimate p̂ = Sn

n
is within 0.05 of the true p with prob. at least 0.99?
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Confidence intervals

Definition
Let X ∼ Ber(p) and p̂ be an estimator of p.
A confidence interval at level α of p is an interval of the form

[p̂ − ε, p̂ + ε] s.t. P(p ∈ [p̂ − ε, p̂ + ε]) ≥ α

which is equivalent to P(|p̂ − p| ≤ ε) ≥ α.

Question: what is the random variable here? Where is the randomness?
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Confidence Intervals

Example

We repeat a trial 1000 times and observe 450 successes.
Find a 95% confidence interval for the true success probability p.
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Polling

Sampling without replacement

▶ In the previous polling, by considering a binomial approximation,
we are considering a sampling with replacement (see lecture 12)

▶ In reality one would not call twice the same person

▶ In other words the variable would not be a binomial but a hypergeometric
distribution

▶ Would our approximation still work?
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Binomial limit of the hypergeometric distribution

Binomial limit of the hypergeometric distribution

▶ Consider picking n people from a population of size N with NA people
linking spinach and N − NA people who do not like spinach

▶ Let X be the number of people you sampled that liked spinach
X ∼ Hypergeo(N,NA, n)

▶ Consider N → +∞ and NA → +∞ such that N/NA = p remains constant

▶ Then P(X = k) →
(
n
k

)
pk(1− p)k , i.e., X tends to have a binomial

distribution1

▶ So a normal approximation could again be used for polling a large
population using sampling without replacement

▶ We saw this with the DNA vs scrabble tiles example before

1See backup slides
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Poisson approximation: motivation

▶ We have seen limits of distribution when p is not too close to 0 or 1

▶ What happens if the event is extremely rare, i.e., p ≪ 1?
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Demo: normal approximation poor for small p

Remember the rule of thumb: normal approx. is fine if np(1− p) > 10

▶ Here p = 0.04, 0.02, 0.005

▶ Last time normal approx. worked in an example with p = 1/36 = 0.027,
but n = 104 in that example; here n = 100

▶ With small enough p, the normal distribution has nonneglible probability
on negative numbers whereas binomial RVs are strictly positive
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Figure: Bin(100, λ/100) and its normal approximation.
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Approximation for very rare events

Motivation

▶ As for the normal approximation,
we would like to understand what happens for very large n

▶ To model that the probability of success remains small,
we consider a probability of success p = λ/n for some λ

▶ Namely, we’ll consider binomials of the form Sn = Bin(n, λ/n)

▶ Interpretation: for any n, E[Sn] = λ, which means that the probability of
success is so small that even as n increases the expected number of
successes does not increase
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Poisson approximation of the binomial

Lemma
Let λ > 0, consider Sn ∼ Bin(n, λ/n) for n > λ.

lim
n→+∞

P(Sn = k) = e−λ λ
k

k!

Proof:

P(Sn = k) =
(n
k

)(
λ

n

)k (
1−

λ

n

)n−k

=
n(n − 1) . . . (n − k + 1)

k!

λk

nk

(
1−

λ

n

)n 1

(1− λ/n)k

=
λk

k!

(
1−

λ

n

)n [
1 ·

(
1−

1

n

)
·
(
1−

2

n

)
. . .

(
1−

k − 1

n

)]
1

(1− λ/n)k

→
n→+∞

λk

k!
e−λ · 1 · 1

where we used that limn→+∞(1 + x/n)n = ex (see additional slides for proof of this
fact)
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Poisson distribution

The distribution we obtained is known as a Poisson distribution:

Definition
A RV is a Poisson RV with rate parameter λ > 0 if it has a pmf

P(X = k) = e−λ λ
k

k!
for k ∈ {0, 1, 2, . . .}

We denote it X ∼ Poiss(λ), and we have E[X ] = λ,Var(X ) = λ.

pmf of X ∼ Poiss(λ)
Source: Wikipedia
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Poisson approximation of the binomial

So the previous lemma can be interpreted as a Poisson approximation of the
binomial:

Lemma
Let λ > 0, consider Sn ∼ Bin(n, λ/n) for n > λ. Then

lim
n→+∞

P(Sn = k) = e−λ λ
k

k!
.

Interpretation

If Sn counts the number of successes of n independent trials and the mean
E[Sn] = λ does not change with n, then as n → +∞. the dist. of Sn

approaches the dist. of a Poisson dist.
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Poisson approximation to binomial
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Poisson approximation of the binomial

Great, but what if n is finite?

Lemma
Let X ∼ Bin(n, p) and Y ∼ Poiss(np) then for any A ⊂ {0, 1, 2, . . .},

|P(X ∈ A)− P(Y ∈ A)| ≤ np2

Interpretation

▶ When approximating a binomial by a Poisson RV you’ll make an error of
at most np2

▶ So if np2 ≪ 1, then the Poisson dist. is a good approximation of the
binomial

▶ So if p is very small (rare events), the Poisson distribution is a good
approximation of the binomial
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Poisson approximation of the binomial

Example

Let X ∼ Bin(10, 1/10). Compare the Poisson and normal approximations of
P(X ≤ 1).
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Poisson dist. as a model for rare events

Motivation

▶ Beyond being used as an approximation, the Poisson distribution can be
used directly to model rare events

▶ The Poisson distribution gives the probability of a given number of events
(a nonnegative integer) occurring in a fixed interval of time or space if
these events occur with a known constant mean rate and independently of
the time since the last event

Lemma (Poisson modeling of rare events)

If a RV X counts occurrences of rare events that are not strongly dependent on
each other, then X is approximately distributed Poiss(λ) for λ = E[X ].
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Poisson distribution

Example

Suppose a factory experiences on average 3 accidents per month. What is the
proba. that there are at most 2 accidents a given month?
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Computing the maximum of p(1− p)

Computing the maximum of p(1− p)

▶ Let f (p) = p(1− p)

▶ Then f ′(p) = 1− 2p

▶ Therefore for p ∈ [0, 1/2], f ′(p) ≥ 0 and for p ∈ [1/2, 1], f ′(p) ≤ 0

▶ The maximum of f is then reached on p = 1/2, which gives

max
p∈[0,1]

f (p) = f (1/2) = 1/4
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Binomial limit of the hypergeometric distribution
▶ Consider picking n people from a population of size N with NA people

linking spinach and N − NA people who do not like spinach
▶ Let X be the number of people you sampled that liked spinach

X ∼ Hypergeo(N,NA, n)

P(X = k) =

(NA
k

)(N−NA
n−k

)(N
n

) =

(NA)k
k!

(N−NA)n−k

(n−k)!

(N)n
n!

=
(n
k

) (NA)k (N − NA)n−k

(N)n

where (a)k = a(a− 1) . . . (a− k + 1) = a!/(a− k)!

Then
(NA)k (N − NA)n−k

(N)n
=

NA(N − 1) . . . (NA − k + 1)

N(N − 1) . . . (N − k + 1)
·
(N − NA)(N − NA − 1) . . . (N − NA − n + k + 1)

(N − k)(N − k − 1) . . . (N − n + 1)

=

(
NA

N

)k k∏
i=1

(1 − i−1
NA

)(
1 − i−1

N

) (
1 −

NA

N

)n−k n∏
i=k+1

(
1 − i−k−1

N−NA

)
(
1 − i−1

N

)
→ pk (1 − p)k

▶ Consider N → +∞ and NA → +∞ such that N/NA = p remains constant

▶ Then
(NA)k (N−NA)n−k

(N)n
→ pk(1− p)n−k

▶ Thus P(X = k) →
(
n
k

)
pk(1− p)k , i.e., X tends to have a binomial

distribution
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Limit

Reminder

Lemma
The Taylor approximation of the logarithm is for any |x | < 1,

ln(1 + x) = x − x2

2
+

x3

3
− x4

4
+ . . .

▶ For any |t| < 1,
1

1 + t
= 1− t + t2 − t3 + . . .

▶ Since ln(1 + x) =
∫ x

0
1

1+t
dt, we get that for any |x | < 1,

ln(1 + x) = x − x2

2
+

x3

3
− x4

4
+ . . .
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Limit

Lemma
We have for any x ∈ R,

lim
s→+∞

(1 + x/s)s = ex

For any s ∈ R, s > 0, (1 + x/s)s = exp(s ln(1 + x/s)). Using the Taylor
expansion of ln around 1, we have that ln(1 + x/s) = x/s + o(x/s) for x small
enough, where o is a continuous function such that limy→0 o(y)/y = 0.
Therefore we get

lim
s→0

(1+x/s)s = lim
s→+∞

exp(s(x/s+o(x/s))) = exp(x) lim
y→0

exp(o(yx)/y)) = exp(x),

by definition of o and continuity of exp for the last equation.
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