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Weak law of large numbers

▶ Setting: an experiment consisting of a series of iid trials

▶ Recall the definition of the empirical mean:

Xn =
X1 + . . .+ Xn

n

for Xi
iid∼ X where X is a RV that models a single trial in our experiment

▶ If µ is the mean of X and σ2 is its variance, then E[Xn] = µ and
Var(Xn) = σ2/n.

▶ For any number ε > 0, by Chebyshev’s inequality,

P(|Xn − µ| ≥ ε) ≤ σ2

nε2
→

n→∞
0

▶ This will help us formalize the idea that Xn converges to µ (next slide)

1 / 29



Weak law of large numbers

Theorem
Let X1, . . . ,Xn be iid RVs with finite variance σ2 and finite mean µ.
For any fixed ε > 0,

lim
n→+∞

P

(∣∣∣∣∣1n
n∑

i=1

Xi − µ

∣∣∣∣∣ < ε

)
= 1.

We say the sample average converges in probability towards the expected value.

Interpretation:

No matter how small an interval [µ− ε, µ+ ε] you choose around µ,
as n becomes large, the observed empirical mean will lie inside this interval

with overwhelming probability.
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Strong law of large numbers

It turns out, actually, that an even stronger type of convergence holds:

Theorem (Strong Law of Large Numbers)

Let X1, . . . ,Xn be iid RV with finite mean µ.

P

(
lim

n→+∞

1

n

n∑
i=1

Xi = µ

)
= 1

We say the sample average converges almost surely towards the expected value.

The proof is much more complex; we will not cover it. In this course, we will
focus on the WLLN instead.

Note:

▶ Almost sure convergence is similar to pointwise convergence in real analysis

▶ MATH/STAT 395 will cover more about different types of convergence
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WLLN: example

Example

Suppose we want to estimate the population mean of a RV X using the sample
mean Xn over a finite number of independent samples or data points X1, ...,Xn.
Suppose that we know that Var(X ) ≤ c for some value c. How large does our
sample need to be (how many data points, or how large does n need to be) in
order for us to be 99% sure that our estimate (the sample mean) is within 0.05
of the correct value?
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Motivation from the law of large numbers

▶ When you flip a coin, eventually the frequency of tails you observe will be
the actual probability to get a tail

▶ We want to quantify the error in our estimate of that probability, or
quantify the number of flips we need to do to ensure the error is below
some amount

▶ We know that the Chebyshev bound can be loose/uninformative

▶ How can we model the distribution of the sample mean Xn around the true
mean as n → +∞?

▶ This is given by the Gaussian or normal distribution
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Gaussian distribution

Definition
A RV Z has the standard normal distribution (or standard Gaussian
distribution) if Z has density function

ψ(x) =
1√
2π

e−x2/2 for x ∈ R.

We denote it Z ∼ N (0, 1) since it has mean 0 and variance 1.
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Gaussian distribution

Sanity check:

▶ Is the pdf of the Gaussian distribution a valid pdf? (properties?)

Lemma ∫ +∞

−∞
e−x2/2dx =

√
2π.

Derivation: The trick is to compute the square of the integral as a double integral and switch to
polar coordinates(∫ +∞

−∞
e−x2/2dx

)2

=

(∫ +∞

−∞
e−x2/2dx

)
·
(∫ +∞

−∞
e−y2/2dy

)
=

∫ +∞

−∞

∫ +∞

−∞
e−x2/2−y2/2dxdy

=

∫ 2π

0

∫ +∞

0

e−r2/2rdrdθ

=

∫ 2π

0

[
−e−r2/2

]+∞

0

dθ =

∫ 2π

0

dθ = 2π

where we used the change of variable x = r cos(θ), y = r sin(θ) (i.e. we used polar coordinates),

such that x2 + y2 = r2, dxdy = rdrdθ and the bounds go to 0 to +∞ for the radius r and 0 to 2π
for the angle θ.
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cdf of Gaussian distribution

▶ There is no closed form expression for the standard normal cdf!

▶ We’ll denote the cdf by

Φ(t) =
1√
2π

∫ t

−∞
e−x2/2dx .
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cdf of Gaussian distribution

▶ There is no closed form expression for the standard normal cdf!

▶ We’ll denote the cdf by

Φ(t) =
1√
2π

∫ t

−∞
e−x2/2dx .

▶ So how do we compute the cdf Φ(t) for a value t? Lookup tables (e.g.
textbook) or statistical software (e.g. pnorm in R)

▶ By symmetry of the distribution, for any t,

Φ(−t) =
1√
2π

∫ −t

−∞
e−x2/2dx =

1√
2π

∫ +∞

t

e−x2/2dx = 1− Φ(t)

▶ Example: What is the probability that |Z | ≤ 1?
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Lookup table (see also the back of your textbook)
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Gaussian Distribution

Example

Let Z ∼ N (0, 1). Find P(−1 ≤ Z ≤ 1.5).
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Gaussian distribution

Lemma
If Z ∼ N (0, 1), then E[Z ] = 0 and Var(Z) = 1.

▶ First check that E[Z ] is well defined, which means showing that E[|Z |] < +∞.

For that one shows that
∫ +∞
−∞ |x|e−x2/2dx = 2

∫ +∞
0

xe−x2/2dx = 2 is finite

▶ Then since the pdf of Z satisfies ψ(x) = ψ(−x), we have that (ψ is the pdf of Z)∫ a

−a

xψ(x)dx =

∫ 0

−a

xψ(x)dx +

∫ a

0

xψ(x)dx = −
∫ a

0

xψ(−x)dx +

∫ a

0

xψ(x)dx = 0

▶ Therefore E[Z ] = 0

▶ On the other hand by integration by parts, i.e.,
∫ b
a
f ′g = [fg ]ba −

∫ b
a
fg ′ for f (x) = −e−x2/2

and g(x) = x .

E[Z 2] =
1

√
2π

∫ +∞

−∞
x2e−x2/2dx

= −
1

√
2π

([
xe−x2/2

]+∞

−∞
−
∫ +∞

−∞
e−x2/2dx

)

=
1

√
2π

∫ +∞

−∞
e−x2/2dx = 1
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Gaussian distribution
Can we generalize the standard normal distribution?

Example

Let Z ∼ N (0, 1) and let X = σZ + µ for σ > 0, µ ∈ R.
1. Compute E[X ], Var(X ).

2. Compute the pdf of X .
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Generic Gaussian distribution

▶ From the standard normal distribution, we can define a whole family of
normal distributions as X = σZ + µ

▶ These distributions are entirely characterized (parameterized) by their
mean and their variance

Definition
Let µ ∈ R and σ > 0, a RV X has the normal/Gaussian distribution with
mean µ and variance σ2 if X has the pdf

f (x) =
1√
2πσ2

e−(x−µ)2/(2σ2) for x ∈ R.

We denote it X ∼ N (µ, σ2).
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Generic Gaussian distribution

Example

Let µ ∈ R, σ > 0 and X ∼ N (µ, σ2)
Let a ̸= 0 and b ∈ R, show that Y = aX + b ∼ N (aµ+ b, a2σ2).
In particular what is the dist. of Z = X−µ

σ
?
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Generic Gaussian distribution

From generic to standard normal

▶ Computing prob. of X ∼ N (µ, σ2) can be done by using the cdf of the
standard normal dist.

P(X ∈ [a, b]) = P(a ≤ X ≤ b) = P

(
a− µ

σ
≤ X − µ

σ
≤ b − µ

σ

)
,

=⇒ P(X ∈ [a, b]) = Φ

(
b − µ

σ

)
− Φ

(a− µ

σ

)
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Classical quantiles

▶ if X has a normal distribution,
▶ about 90% probability X falls within 1.645 SD of the mean,
▶ about 95% probability X falls within 1.96 SD of the mean,
▶ about 99% probability X falls within 2.576 SD of the mean.
▶ How does this compare to what you found with the standard normal?

▶ The probability of X falls 4, 5, or more standard deviations away from the
mean is very low.
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Summary

Weak law of large numbers (WLLN)
Let X1, . . . ,Xn be iid RVs with finite variance σ2 and finite mean µ.
For any fixed ε > 0,

lim
n→+∞

P

(∣∣∣∣∣1n
n∑

i=1

Xi − µ

∣∣∣∣∣ < ε

)
= 1

Standard normal/Gaussian distribution

▶ Z ∼ N (0, 1) has pdf

ψ(x) =
1√
2π

e−x2/2

▶ cdf Φ(x) not available in closed form but given by tables

▶ E[Z ] = 0, Var(Z) = 1

Normal/Gaussian distribution

▶ X ∼ N (µ, σ2) has E[X ] = µ, Var(X ) = σ2, and pdf

f (x) =
1√
2πσ2

e−(x−µ)2/2σ2

▶ X can be constructed from Z via X = σZ + µ, and Z = X−µ
σ
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Normal Approximation

Motivation

▶ We turn back to our original motivation:
How close is the empirical mean to the true mean of a RV?

▶ We know that for n iid observations Xi
iid∼ X of X ,

1. Xn = X1+...+Xn
n

converges to E[X ] (law of large numbers)

2. the variance of Xn is Var(X )/n

▶ We can use concentration inequalities such as Chebyshev to bound

P(|Xn − E[X ]| ≥ ε)

for any ε > 0

▶ Could we know more than that?

▶ Could we know the whole distribution of Xn around E[X ] as n → +∞?
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Normal approximation
Idea

▶ Isolate the unknown information about Xn by standardizing Xn

Definition
Let X be a RV with finite mean µ = E[X ], centering X consists in considering

Y = X − µ

s.t. E[Y ] = 0.
For X with finite standard deviation σ, standardizing X consists in considering

Z =
X − µ

σ

s.t. E[Z ] = 0 and Var(Z) = 1.

Example
We already saw that standardizing X ∼ N (µ, σ2) yields Z = X−µ

σ
∼ N (0, 1).
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Normal approximation

Standardizing the empirical mean

For n iid observations of X , i.e., Xi
iid∼ X , with µ = E[X ], Var(X ) = σ2

the standardized empirical mean is

Zn =
Xn − E[Xn]√

Var(Xn)
=

Xn − µ

σ/
√
n

such that

Xn = µ+

√
n

σ
Zn.

Question
Now, what could be the distribution of Zn as n → +∞?
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Normal Approximation

Bernoulli case

▶ Let’s look at a simple example: Xi
iid∼ Ber(p), in that case,

Zn =
Sn/n − p√
p(1− p)/n

=
Sn − np√
np(1− p)

with Sn = X1 + . . .+ Xn ∼ Bin(n, p).

▶ The pmf of Zn is then given by

P

(
Zn =

k − np√
np(1− p)

)
= P(Sn = k) for k ∈ {0, . . . n}
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Plots of pmf of Zn for p = 0.4 and n = 10, 50, 100
→ Looks like the bell of a Gaussian distribution!
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Normal Approximation
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Bullets: pmf of Zn for p = 0.4 and n = 500
Red curve1: X ∼ N (0, 1)

1See additional slides for more details on how the plot is done
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Normal approximation

Theorem (Central Limit Theorem (CLT) for binomial random variables)

Let 0 < p < 1, consider n iid observations Xi
iid∼ Ber(p) of a Bernoulli RV.

The distribution of the standardized empirical mean

Zn =
Xn − E[Xn]√

Var(Xn)
=

Sn − np√
np(1− p)

,

where Sn = X1 + . . .+ Xn ∼ Bin(n, p) and Xn = Sn/n,
converges to the distribution of a standard normal distribution,
i.e., for any −∞ ≤ a ≤ b ≤ +∞,

lim
n→+∞

P (a ≤ Zn ≤ b) = P(a ≤ Z ≤ b) =

∫ b

a

1√
2π

e−x2/2dx

for Z ∼ N (0, 1).

Notes:

▶ Compared to the law of large numbers, this is a limit in distribution,
i.e., as n → +∞, we get a formulation of the prob. in terms of a fixed pdf
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Normal approximation

Application

▶ Previous theorem can be used to approx. the distribution of a binomial
(which could be hard to compute as n → +∞ because of the choose numbers)

▶ Previous theorem is still only valid for a limit, below is a practical rule

Lemma
Suppose that Sn ∼ Bin(n, p) with n large and p not too close to 0 and 1, then

P

(
a ≤ Sn − np√

np(1− p)
≤ b

)
≈ Φ(b)− Φ(a)

with Φ the cdf of Z ∼ N (0, 1).
As a rule of thumb the approx. is good if np(1− p) > 10.

Note:

▶ We will see that if p is too small even for large n the normal distribution is
not the right approximation of the binomial.
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Normal approximation to the binomial

Example

Suppose we roll a pair of fair dice 10,000 times. Estimate the probability that
the number of times we get snake eyes (two ones) is between 280 and 300.
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Preview: the Central Limit Theorem

We can generalize this beyond the binomial distribution:

Theorem (Central Limit Theorem)

Suppose that we have iid RVs X1, ...,Xn with finite mean E[Xi ] = µ and finite
variance Var(Xi ) = σ2. Let Sn =

∑
i Xi . Then

P

(
a ≤ Sn − nµ

σ
√
n

≤ b

)
≈ Φ(b)− Φ(a).

The CLT will be covered in greater detail in MATH/STAT 395.
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Details on the plots

Notes
An attentive reader may have noticed that the plot of slide 11 is not the plot of the pdf of a
standard normal distribution, since on 0 the pdf of X ∼ N (0, 1) should be approx. 0.4
Indeed a continuity correction has been used (see lecture 26).
Namely, we have with the notations of slide 10

P

(
Zn =

k − np√
np(1 − p)

)
= P

(
k − 1/2 − np√

np(1 − p)
≤ Zn ≤

k + 1/2 − np√
np(1 − p)

)

≈ Φ

(
k + 1/2 − np√

np(1 − p)

)
− Φ

(
k − 1/2 − np√

np(1 − p)

)

≈
ψ

(
k−np√
np(1−p)

)
√

np(1 − p)

where ψ(x) = e−x2/2/
√
2π is the pdf of X ∼ N (0, 1)

and I used in the last line that for a function f ,

f (x + 1/2) − f (x − 1/2) ≈ f ′(x)

with f (x) = Φ

(
x−np√
np(1−p)

)
.

So the red curve on slide 11 is the plot of a scaled version of the normal distribution

Namely it is the plot of ψ(x)√
np(1−p)

for x ∈
{

k−np√
np(1−p)

, k ∈ {0, . . . n}
}
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Details on the plots

Direct visualization
Another way to visualize how much a binomial is close to some normal distribution is to consider

that since Sn = np +
√

np(1 − p)Zn with Zn ≈ N (0, 1) (Zn is the standardized empirical mean),
then we should have

Sn ≈ N (np, np(1 − p))

The pmf of Sn and the pdf of its normal approx. are given below (without any scaling)
Though these plots are more natural, they hide the general reasoning of ”standardizing the
empirical mean” which can be applied for any empirical mean (not only the empirical mean of
Bernoulli RV)

Bullets: pmf of S1000 ∼ Bin(1000, 0.6)
Red curve: pdf of X ∼ N (600, 240)
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