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Announcements + clarifications

▶ HW 4

▶ Piecewise function notation
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Expectation of a function of a RV

From Chapter 3:

If we know the distribution of a RV X and now we are interested in a RV
Y = g(X ) for some function g , we know how to compute E[Y ]:

Theorem
Let X be a RV that takes values in X and g : X → R be some function.

E[g(X )] =
∑
k∈X

g(k)p(k) if X is discrete with pmf p,

E[g(X )] =

∫ +∞

−∞
g(x)f (x)dx if X is continuous with pdf f .

Now we will cover how to derive the distribution of Y from the dist. of X

2 / 28



Invertible functions

Main idea: map values of Y = g(X ) back to X

▶ One concept that might come to mind is the inverse: a map or function
g : A → B is invertible if for every y ∈ B there is a unique x ∈ A such
that y = g(x)

▶ Any monotonic (strictly increasing/decreasing) function g is invertible

▶ e.g. g(x) = x2 is invertible on [0,∞)
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What if g is not invertible?

Maybe multiple values of X map to the same value (y) of Y , so that g−1(y) is
a set, not a single number
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Images and pre-images of sets

Definition
Let A, B be two sets and g : A → B. The image of F ⊆ A under g is defined
as

g(F ) = {g(x) : x ∈ F} ⊆ B.

The pre-image of T ⊆ B under g is

g−1(T ) = {x ∈ A : g(x) ∈ T} ⊆ A.

▶ The notation g−1 is the same we use for the inverse of g when it is
defined, but here we are not assuming g is invertible

▶ The pre-image of a set always exists even if the inverse does not exist

▶ If g is invertible, then g−1(T ) is the image of T under the inverse map
g−1

▶ These definitions apply on sets not on variables

▶ If there is no element that maps onto T , then g−1(T ) = ∅
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Summary: transformations of a discrete RV

Lemma
Let X be a discrete RV, let g : R → R, and let Y = g(X ). The pmf of Y is

pY (y) = P(g(X ) = y) = P(X ∈ g−1({y})) =
∑

k:g(k)=y
k∈X

pX (k).

▶ Why is this result specifically for discrete RVs?
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Discrete transformation of a continuous RV

For continuous RVs X let’s start by considering the case that the
transformation g(X ) is discrete.

Example

Suppose that a student’s score X is continuous and uniformly distributed on
[0, 100]: X ∼ Unif[0, 100]. A teacher rounds the students’ scores to the nearest
integer, e.g. if 4.5 ≤ X < 5.5, then the rounded score Y equals 5.
What is the pmf of the rounded scores Y ?
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Discrete transformation of a continuous RV

More generally we have the following result, which is the same as before:

Lemma
Let X be a continuous RV and g : R → Y be a function that maps R onto a
discrete set Y.
Then the RV Y is discrete and for any k ∈ Y,

P(Y = k) = P(X ∈ g−1({k})).
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Summary so far

▶ If X is discrete and g is any function, then the pmf of Y = g(X ) is

P(Y = y) = P
(
X ∈ g−1({y})

)
for y ∈ g(X ),

where g−1({y}) = {k ∈ X : g(k) = y} is the pre-image of y under g .

▶ If X is continuous but g is a discrete function (g : R → Y with Y
discrete), then we have the same result except that we integrate over
subsets of R instead of summing over subsets of a discrete space X :

P(Y = y) = P
(
X ∈ g−1({y})

)
,

where g−1({y}) = {x ∈ R : g(x) = y} is the pre-image of y under g .
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Continuous transformation of a continuous RV

The cdf method

▶ For a continuous RV, the pdf has no interpretation as a probability
distribution

▶ It is easier to compute the cdf of Y = g(X ), then differentiate to get the
pdf

▶ We will first illustrate the idea, then detail the method if
1. g is invertible
2. g is not invertible on R but invertible on some intervals of R that form a

partition of R
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The cdf method: Example

Example

Let X be a continuous RV with pdf fX . What is the pdf of Y = aX + b for
some constants a, b with a > 0?
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The cdf method: Derivation

g invertible, strictly decreasing
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The cdf method: summary

Previous considerations can be summarized by the following lemma:

Lemma
Let X be a continuous RV with pdf fX .
Let g : R → R be differentiable and strictly monotonic.
Then the pdf of Y = g(X ) exists and is given by

fY (y) =

{∣∣∣ 1
g′(g−1(y))

∣∣∣ fX (g−1(y)) if y ∈ g(R),
0 otherwise.

Note:

▶ It is preferable to remember the method rather than the lemma because
the method is more flexible (see next slides)
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The cdf method: further considerations

1. What if g is not defined on all of R?
▶ g only needs to be defined on a subset B ⊆ R s.t. P(X ∈ B) = 1

▶ For y ̸∈ g(B), define fY (y) = 0

Example

Let X ∼ Unif([0, 1]) and g : x 7→ − 1
λ
log(1− x), where λ > 0. What is the

distribution of Y = g(X )?
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The cdf method: further considerations

2. What if g is not invertible?

▶ Partition R into intervals [ai , ai+1] such that g is invertible on each interval
[ai , ai+1]

▶ Apply previous reasoning on these intervals

▶ Combine the results to get the cdf, then differentiate to get the pdf

Example

Let X be a continuous RV with pdf fX . Find the pdf of Y = X 2.
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The cdf method: further considerations

2. What if g is not invertible?

▶ Alternative (ultimately equivalent) approach below

Example

Let X be a continuous RV with pdf fX . Find the pdf of Y = X 2.
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Summary: transformations of RVs

▶ If X is discrete and g is any function, then the pmf of Y = g(X ) is

P(Y = y) = P
(
X ∈ g−1({y})

)
for y ∈ g(X ),

where g−1({y}) = {k ∈ X : g(k) = y} is the pre-image of y under g .

▶ If X is continuous but Y = g(X ) is discrete (g : R → Y with Y discrete),
then we have the same result except that we integrate over subsets of R
instead of summing over subsets of a discrete space X :

P(Y = y) = P
(
X ∈ g−1({y})

)
,

where g−1({y}) = {x ∈ R : g(x) = y} is the pre-image of y under g .

▶ If X and Y = g(X ) are continuous, then use the cdf method in some form
▶ Identify the possible values of X : only need to account for values of g(x) on

this set
▶ Identify the possible values of Y : fY (y) = 0 for all other values in R
▶ Compute the cdf of Y
▶ If you need the pdf of Y , differentiate
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Motivation

What we’ve studied so far

▶ How can we frame a problem in terms of a probability model?

▶ Given a probability model or probability distribution, how can we compute
some useful summaries like the expectation and variance?

But in practice we often don’t fully know the distribution

▶ When you flip a coin, what if you don’t want to assume it’s fair but
instead estimate p?

▶ What if you want to estimate average income from survey data?
▶ We can often partially write the probability model but

▶ there may be parameters we don’t know (e.g. X ∼ Bern(p) but we don’t
know p)

▶ maybe we know the mean and variance but not higher moments
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Example: Bernoulli trials

Example

Suppose you have a coin and want to estimate its bias. What would you do?
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General setting

▶ In general, suppose you can frame the problem of interest as a series of
independent identically distributed (iid) trials

▶ A common estimator of the true mean is the empirical or sample mean

Definition
Let X1, . . .Xn

iid∼ X (i.e. n independent RVs, identically distributed as a RV X ). The
empirical/sample mean is defined by

X n :=
X1 + . . .+ Xn

n
.

▶ In the case that some event A can happen or not in each trial and you are
interested in the average number of times A happens in n trials, you have
X ∼ Binom(n, p) and want to estimate np. What if you know n but not p?

▶ We will study the empirical mean as a random variable to understand its
properties
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Properties of the empirical mean of iid trials

▶ Regardless of whether the Xi are independent, as long as they are
identically distributed then we have from linearity of expectation that the
mean of the sample mean is the true mean:

E
[
X n

]
=

1

n

∑
i

E[Xi ] = E[X ].

We say that the sample mean is unbiased.

▶ If the Xi are iid (why do we need iid here?), then

Var
(
X n

)
=

1

n2

∑
i

Var[Xi ] =
1

n
Var[X ].

As the number of trials increases, what happens to the variance of your
estimate? Does that make sense?

▶ Therefore, as n → ∞ it seems that X n → E[X ]. We will develop tools to
formalize this (both in this course and in MATH/STAT 395).
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Estimating tail probabilities: Motivation

▶ Convergence of the empirical mean will necessarily be stated in terms of
probability

▶ Namely, we would like to show that as n → +∞, the probability that X n

differs from E[X ] tends to 0

▶ For that we’ll need some tools to bound probabilities when we only know
e.g. the mean/the variance of a RV

▶ That’s what concentration inequalities are about
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Concentration inequalities

First, we’ll need the following result:

Theorem (Monotonicity of Expectation)

If two RVs X ,Y defined on the same probability space (Ω,F ,P) have finite
means and satisfy that P(X ≤ Y ) = 1, then E[X ] ≤ E[Y ].
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Markov’s Inequality

What can we say about the probability of X if we know E[X ]?

Theorem (Markov’s inequality)

If X is a non-negative RV with finite mean, then for any c > 0,

P(X ≥ c) ≤ E[X ]

c
.

Proof:
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Markov’s inequality

Example

A donut vendor sells on average 1000 donuts per day. Could he sell more than
1400 donuts tomorrow with probability greater than 0.8?
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Markov’s inequality

Example

Let X ∼ Ber(p) for some p ∈ (0, 1).

1. What is P(X ≥ 0.01)?

2. What does Markov’s inequality give us?
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Chebyshev’s inequality

What can we say about the probability of X if we know both E[X ] and Var(X )?

Theorem (Chebyshev’s Inequality)

If X is a RV with finite mean µ and finite variance σ2, then for any c > 0,

P(|X − µ| ≥ c) ≤ σ2

c2
.

Proof:

Note:
The event {|X − µ| ≥ c} contains the events {X ≥ µ+ c} and {X ≤ µ− c}
So we naturally have a bound on P(X ≥ µ+ c), P(X ≤ µ− c)
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Example

Example

A donut vendor sells on average 1000 donuts per day with a standard deviation
of

√
200. Given just this information, provide a bound on

1. the probability that he will sell between 950 and 1050 donuts tomorrow

2. the probability that he will sell at least 1400 donuts tomorrow
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