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Announcements + clarifications

> HW 4

» Piecewise function notation

1/28



Outline

Distribution of a transformation of a RV (§5.2)



Expectation of a function of a RV

From Chapter 3:

If we know the distribution of a RV X and now we are interested in a RV
Y = g(X) for some function g, we know how to compute E[Y]:

Theorem
Let X be a RV that takes values in X and g : X — R be some function.
Elg(X)] = g(k)p(k) if X is discrete with pmf p,
kex
+o0
Elg(X)] = / g(x)f(x)dx if X is continuous with pdf f.

Now we will cover how to derive the distribution of Y from the dist. of X
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Invertible functions

Main idea: map values of Y = g(X) back to X

» One concept that might come to mind is the inverse: a map or function
g : A — B is invertible if for every y € B there is a unique x € A such
that y = g(x)

» Any monotonic (strictly increasing/decreasing) function g is invertible

> e.g. g(x) = x*is invertible on [0, o)
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What if g is not invertible?

Maybe multiple values of X map to the same value (y) of Y, so that g7 !(y) is
a set, not a single number
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Images and pre-images of sets

Definition
Let A, B be two sets and g : A — B. The image of F C A under g is defined
as

g(F) ={g(x): xe F} C B.
The pre-image of T C B under g is

g N T)={xecA gx)e T}CA.

> The notation g~ ! is the same we use for the inverse of g when it is
defined, but here we are not assuming g is invertible

» The pre-image of a set always exists even if the inverse does not exist

> If g is invertible, then g~*(T) is the image of T under the inverse map
gt

» These definitions apply on sets not on variables

> If there is no element that maps onto T, then g7 *(T) =0
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Summary: transformations of a discrete RV

Lemma
Let X be a discrete RV, let g : R — R, and let Y = g(X). The pmfof Y is

pr(y) = P(e(X)=y)=P(Xeg ' (y})) = D> px(k)

kg (k)=y
kex

» Why is this result specifically for discrete RVs?
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Discrete transformation of a continuous RV

For continuous RVs X let's start by considering the case that the
transformation g(X) is discrete.

Example

Suppose that a student’s score X is continuous and uniformly distributed on
[0,100]: X ~ Unif[0,100]. A teacher rounds the students’ scores to the nearest
integer, e.g. if 4.5 < X < 5.5, then the rounded score Y equals 5.

What is the pmf of the rounded scores Y?
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Discrete transformation of a continuous RV

More generally we have the following result, which is the same as before:

Lemma
Let X be a continuous RV and g : R — ) be a function that maps R onto a

discrete set ).
Then the RV Y s discrete and for any k € ),

P(Y = k) = P(X € g "({K})).
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Summary so far

> If X is discrete and g is any function, then the pmf of Y = g(X) is
P(Y=y)=P(Xeg ({y})) foryeg(X),
where g7 ({y}) = {k € X : g(k) = y} is the pre-image of y under g.
» If X is continuous but g is a discrete function (g : R — ) with

discrete), then we have the same result except that we integrate over
subsets of R instead of summing over subsets of a discrete space X

P(Y =y)=P(X g '({r}),

where g1 ({y}) = {x € R: g(x) = y} is the pre-image of y under g.
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Continuous transformation of a continuous RV

The cdf method
» For a continuous RV, the pdf has no interpretation as a probability
distribution
> |t is easier to compute the cdf of Y = g(X), then differentiate to get the
pdf
» We will first illustrate the idea, then detail the method if

1. g is invertible
2. g is not invertible on R but invertible on some intervals of R that form a

partition of R
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The cdf method: Example

Example
Let X be a continuous RV with pdf fx. What is the pdf of Y = aX + b for

some constants a, b with a > 07
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The cdf method: Derivation

g invertible, strictly decreasing
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The cdf method: summary

Previous considerations can be summarized by the following lemma:

Lemma

Let X be a continuous RV with pdf fx.

Let g : R — R be differentiable and strictly monotonic.
Then the pdf of Y = g(X) exists and is given by

f _ W) x(g (Y)) ify € g(R),
v(y) )
0 otherwise.

Note:

» |t is preferable to remember the method rather than the lemma because
the method is more flexible (see next slides)
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The cdf method: further considerations

1. What if g is not defined on all of R?
> g only needs to be defined on a subset BC Rs.t. P(X e B)=1

» For y & g(B), define fy(y) =0

Example
Let X ~ Unif([0,1]) and g : x — — 5 log(1 — x), where XA > 0. What is the
distribution of Y = g(X)?
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The cdf method: further considerations

2. What if g is not invertible?
> Partition R into intervals [a;, ai+1] such that g is invertible on each interval
[ai, ai+1]
» Apply previous reasoning on these intervals
» Combine the results to get the cdf, then differentiate to get the pdf

Example
Let X be a continuous RV with pdf fx. Find the pdf of Y = X2.

15 /28



The cdf method: further considerations

2. What if g is not invertible?

> Alternative (ultimately equivalent) approach below

Example
Let X be a continuous RV with pdf fx. Find the pdf of Y = X2
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Summary: transformations of RVs

» If X is discrete and g is any function, then the pmf of Y = g(X) is
P(Y=y)=P(Xcg '({y}) foryeg(X),
where g 2 ({y}) = {k € X : g(k) = y} is the pre-image of y under g.
> If X is continuous but Y = g(X) is discrete (g : R — ) with ) discrete),

then we have the same result except that we integrate over subsets of R
instead of summing over subsets of a discrete space X

P(Y =y)=P(X g™ ({y}),
where g1 ({y}) = {x € R: g(x) = y} is the pre-image of y under g.

> If X and Y = g(X) are continuous, then use the cdf method in some form
» Identify the possible values of X: only need to account for values of g(x) on
this set
> Identify the possible values of Y: fy(y) = 0 for all other values in R
» Compute the cdf of Y
> If you need the pdf of Y, differentiate
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Motivation

What we've studied so far
» How can we frame a problem in terms of a probability model?

» Given a probability model or probability distribution, how can we compute

some useful summaries like the expectation and variance?
But in practice we often don't fully know the distribution

» When you flip a coin, what if you don’t want to assume it's fair but
instead estimate p?

» What if you want to estimate average income from survey data?

» We can often partially write the probability model but

» there may be parameters we don’t know (e.g. X ~ Bern(p) but we don’t

know p)
» maybe we know the mean and variance but not higher moments
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Example: Bernoulli trials

Example

Suppose you have a coin and want to estimate its bias. What would you do?

19/28



General setting

» In general, suppose you can frame the problem of interest as a series of
independent identically distributed (iid) trials

» A common estimator of the true mean is the empirical or sample mean
Definition y
Let Xi,... X, ~ X (i.e. nindependent RVs, identically distributed as a RV X). The
empirical /sample mean is defined by

— Xi1+...+ X,
X,,::L.

» In the case that some event A can happen or not in each trial and you are
interested in the average number of times A happens in n trials, you have
X ~ Binom(n, p) and want to estimate np. What if you know n but not p?

» We will study the empirical mean as a random variable to understand its
properties
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Properties of the empirical mean of iid trials

» Regardless of whether the X; are independent, as long as they are
identically distributed then we have from linearity of expectation that the
mean of the sample mean is the true mean:

= % Z E[X]] = E[X].

We say that the sample mean is unbiased.
> If the X; are iid (why do we need iid here?), then

Var (X,) = = ZVar[X] fVar[X]

As the number of trials increases, what happens to the variance of your
estimate? Does that make sense?

> Therefore, as n — oo it seems that X, — E[X]. We will develop tools to
formalize this (both in this course and in MATH/STAT 395).
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Estimating tail probabilities: Motivation

» Convergence of the empirical mean will necessarily be stated in terms of
probability

> Namely, we would like to show that as n — +oco, the probability that X,
differs from E[X] tends to 0

» For that we'll need some tools to bound probabilities when we only know
e.g. the mean/the variance of a RV

» That's what concentration inequalities are about
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Concentration inequalities

First, we'll need the following result:

Theorem (Monotonicity of Expectation)

If two RVs X, Y defined on the same probability space (2, F, P) have finite
means and satisfy that P(X < Y) =1, then E[X] < E[Y].
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Markov's Inequality

What can we say about the probability of X if we know E[X]?

Theorem (Markov's inequality)

If X is a non-negative RV with finite mean, then for any ¢ > 0,

P(XZC)S@.

Proof:
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Markov's inequality
Example

A donut vendor sells on average 1000 donuts per day. Could he sell more than
1400 donuts tomorrow with probability greater than 0.87

25 /28



Markov's inequality

Example
Let X ~ Ber(p) for some p € (0,1).
1. What is P(X > 0.01)?
2. What does Markov's inequality give us?
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Chebyshev's inequality

What can we say about the probability of X if we know both E[X] and Var(X)?

Theorem (Chebyshev's Inequality)
If X is a RV with finite mean p and finite variance o2, then for any ¢ > 0,

[N

o
P(|X_N‘ZC)§§~

Proof:

Note:
The event {|X — p| > ¢} contains the events {X > pu+ ¢} and {X < p — ¢}
So we naturally have a bound on P(X > u+c¢), P(X < pu—c)
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Example

Example

A donut vendor sells on average 1000 donuts per day with a standard deviation
of +/200. Given just this information, provide a bound on

1. the probability that he will sell between 950 and 1050 donuts tomorrow
2. the probability that he will sell at least 1400 donuts tomorrow
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