Chapter 4 and beyond: Learning about distributions from finite data Part 1, Mon 11 July

Jess Kunke

MATH/STAT 394: Probability I (Summer 2022 A-term)

Outline

Announcements $+$ clarifications

[Distribution of a transformation of a RV \(](#page-4-0)§5.2)

[Motivation: Estimation from real data](#page-21-0)

[Concentration inequalities](#page-26-0)

Outline

[Announcements + clarifications](#page-2-0)

[Distribution of a transformation of a RV \(](#page-4-0)§5.2)

[Motivation: Estimation from real data](#page-21-0)

Announcements $+$ clarifications

 \blacktriangleright HW 4

▶ Piecewise function notation

Outline

[Distribution of a transformation of a RV \(](#page-4-0)§5.2)

[Motivation: Estimation from real data](#page-21-0)

Expectation of a function of a RV

From Chapter 3:

If we know the distribution of a RV X and now we are interested in a RV $Y = g(X)$ for some function g, we know how to compute E[Y]:

Theorem

Let X be a RV that takes values in X and $g : \mathcal{X} \to \mathbb{R}$ be some function.

$$
E[g(X)] = \sum_{k \in \mathcal{X}} g(k)p(k)
$$
 if X is discrete with pmf p,

$$
E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx
$$
 if X is continuous with pdf f.

Now we will cover how to derive the *distribution* of Y from the dist. of X

Invertible functions

Main idea: map values of $Y = g(X)$ back to X

- ▶ One concept that might come to mind is the inverse: a map or function $g : A \to B$ is **invertible** if for every $y \in B$ there is a unique $x \in A$ such that $y = g(x)$
- Any monotonic (strictly increasing/decreasing) function g is invertible

• e.g.
$$
g(x) = x^2
$$
 is invertible on $[0, \infty)$

What if g is not invertible?

Maybe multiple values of X map to the same value (y) of Y , so that $g^{-1}(y)$ is a set, not a single number

Images and pre-images of sets

Definition

Let A, B be two sets and $g : A \rightarrow B$. The image of $F \subseteq A$ under g is defined as

$$
g(F)=\{g(x):x\in F\}\subseteq B.
$$

The **pre-image** of $T \subseteq B$ under g is

$$
g^{-1}(T)=\{x\in A:g(x)\in T\}\subseteq A.
$$

- ▶ The notation g^{-1} is the same we use for the inverse of g when it is defined, but here we are not assuming g is invertible
- ▶ The pre-image of a set always exists even if the inverse does not exist
- ▶ If g is invertible, then $g^{-1}(T)$ is the image of T under the inverse map $\rm g^{-1}$
- \blacktriangleright These definitions apply on sets not on variables
- ▶ If there is no element that maps onto T, then $g^{-1}(T) = \emptyset$

Summary: transformations of a discrete RV

Lemma

Let X be a discrete RV, let $g : \mathbb{R} \to \mathbb{R}$, and let $Y = g(X)$. The pmf of Y is

$$
p_Y(y) = P(g(X) = y) = P(X \in g^{-1}(\{y\})) = \sum_{\substack{k: g(k) = y \\ k \in X}} p_X(k).
$$

▶ Why is this result specifically for discrete RVs?

Discrete transformation of a continuous RV

For continuous RVs X let's start by considering the case that the transformation $g(X)$ is discrete.

Example

Suppose that a student's score X is continuous and uniformly distributed on [0, 100]: $X \sim$ Unif[0, 100]. A teacher rounds the students' scores to the nearest integer, e.g. if $4.5 \leq X < 5.5$, then the rounded score Y equals 5. What is the pmf of the rounded scores Y ?

Discrete transformation of a continuous RV

More generally we have the following result, which is the same as before:

Lemma

Let X be a continuous RV and $g : \mathbb{R} \to Y$ be a function that maps $\mathbb R$ onto a discrete set Y.

Then the RV Y is discrete and for any $k \in \mathcal{Y}$,

$$
P(Y = k) = P(X \in g^{-1}(\{k\})).
$$

Summary so far

If X is discrete and g is any function, then the pmf of $Y = g(X)$ is $P(Y = y) = P(X \in g^{-1}(\{y\}))$ for $y \in g(\mathcal{X}),$

where $g^{-1}(\{y\})=\{k\in\mathcal{X}: g(k)=y\}$ is the pre-image of y under g .

▶ If X is continuous but g is a discrete function $(g : \mathbb{R} \to Y)$ with Y discrete), then we have the same result except that we integrate over subsets of $\mathbb R$ instead of summing over subsets of a discrete space $\mathcal X$:

$$
P(Y = y) = P(X \in g^{-1}(\{y\})),
$$

where $g^{-1}(\{y\}) = \{x \in \mathbb{R} : g(x) = y\}$ is the pre-image of y under g .

Continuous transformation of a continuous RV

The cdf method

- \triangleright For a continuous RV, the pdf has no interpretation as a probability distribution
- It is easier to compute the cdf of $Y = g(X)$, then differentiate to get the pdf
- ▶ We will first illustrate the idea, then detail the method if
	- 1. g is invertible
	- 2. g is not invertible on $\mathbb R$ but invertible on some intervals of $\mathbb R$ that form a partition of R

The cdf method: Example

Example

Let X be a continuous RV with pdf f_X . What is the pdf of $Y = aX + b$ for some constants a, b with $a > 0$?

The cdf method: Derivation

g invertible, strictly decreasing

The cdf method: summary

Previous considerations can be summarized by the following lemma:

Lemma

Let X be a continuous RV with pdf f_X . Let $g : \mathbb{R} \to \mathbb{R}$ be differentiable and strictly monotonic. Then the pdf of $Y = g(X)$ exists and is given by

$$
f_Y(y) = \begin{cases} \left| \frac{1}{g'(g^{-1}(y))} \right| f_X(g^{-1}(y)) & \text{if } y \in g(\mathbb{R}), \\ 0 & \text{otherwise.} \end{cases}
$$

Note:

▶ It is preferable to remember the method rather than the lemma because the method is more flexible (see next slides)

The cdf method: further considerations

- 1. What if g is not defined on all of \mathbb{R} ?
	- ▶ g only needs to be defined on a subset $B \subseteq \mathbb{R}$ s.t. $P(X \in B) = 1$
	- ▶ For $y \notin g(B)$, define $f_Y(y) = 0$

Example

Let $X \sim \textsf{Unif}([0,1])$ and $g: x \mapsto -\frac{1}{\lambda} \log(1-x)$, where $\lambda > 0$. What is the distribution of $Y = g(X)$?

The cdf method: further considerations

- 2. What if g is not invertible?
	- ▶ Partition R into intervals $[a_i, a_{i+1}]$ such that g is invertible on each interval $[a_i, a_{i+1}]$
	- \blacktriangleright Apply previous reasoning on these intervals
	- ▶ Combine the results to get the cdf, then differentiate to get the pdf

Example

Let X be a continuous RV with pdf f_X . Find the pdf of $Y = X^2$.

The cdf method: further considerations

- 2. What if g is not invertible?
	- \blacktriangleright Alternative (ultimately equivalent) approach below

Example

Let X be a continuous RV with pdf f_X . Find the pdf of $Y = X^2$.

Summary: transformations of RVs

If X is discrete and g is any function, then the pmf of $Y = g(X)$ is

$$
P(Y = y) = P(X \in g^{-1}(\{y\})) \quad \text{for } y \in g(\mathcal{X}),
$$

where $g^{-1}(\{y\})=\{k\in\mathcal{X}: g(k)=y\}$ is the pre-image of y under g .

▶ If X is continuous but $Y = g(X)$ is discrete $(g : \mathbb{R} \to Y)$ with Y discrete), then we have the same result except that we integrate over subsets of $\mathbb R$ instead of summing over subsets of a discrete space \mathcal{X} :

$$
P(Y = y) = P(X \in g^{-1}(\{y\})),
$$

where $g^{-1}(\{y\}) = \{x \in \mathbb{R} : g(x) = y\}$ is the pre-image of y under g .

If X and $Y = g(X)$ are continuous, then use the cdf method in some form

- \blacktriangleright Identify the possible values of X: only need to account for values of $g(x)$ on this set
- \blacktriangleright Identify the possible values of Y: $f_Y(y) = 0$ for all other values in $\mathbb R$
- ▶ Compute the cdf of Y
- \blacktriangleright If you need the pdf of Y, differentiate

Outline

[Distribution of a transformation of a RV \(](#page-4-0)§5.2)

[Motivation: Estimation from real data](#page-21-0)

Motivation

What we've studied so far

- ▶ How can we frame a problem in terms of a probability model?
- ▶ Given a probability model or probability distribution, how can we compute some useful summaries like the expectation and variance?

But in practice we often don't fully know the distribution

- ▶ When you flip a coin, what if you don't want to assume it's fair but instead estimate p?
- ▶ What if you want to estimate average income from survey data?
- \triangleright We can often partially write the probability model but
	- **▶ there may be parameters we don't know (e.g.** $X \sim \text{Bern}(p)$ **but we don't** know p)
	- ▶ maybe we know the mean and variance but not higher moments

Example: Bernoulli trials

Example

Suppose you have a coin and want to estimate its bias. What would you do?

General setting

- ▶ In general, suppose you can frame the problem of interest as a series of independent identically distributed (iid) trials
- ▶ A common estimator of the true mean is the empirical or sample mean

Definition

Let $X_1, \ldots X_n \stackrel{\text{iid}}{\sim} X$ (i.e. n independent RVs, identically distributed as a RV X). The empirical/sample mean is defined by

$$
\overline{X}_n:=\frac{X_1+\ldots+X_n}{n}.
$$

- In the case that some event A can happen or not in each trial and you are interested in the average number of times A happens in n trials, you have $X \sim$ Binom(n, p) and want to estimate np. What if you know n but not p?
- \triangleright We will study the empirical mean as a random variable to understand its properties

Properties of the empirical mean of iid trials

▶ Regardless of whether the X_i are independent, as long as they are identically distributed then we have from linearity of expectation that the mean of the sample mean is the true mean:

$$
\mathsf{E}\left[\overline{X}_n\right] = \frac{1}{n}\sum_i \mathsf{E}[X_i] = \mathsf{E}[X].
$$

We say that the sample mean is unbiased.

If the X_i are iid (why do we need iid here?), then

$$
\text{Var}\left(\overline{X}_n\right) = \frac{1}{n^2} \sum_i \text{Var}[X_i] = \frac{1}{n} \text{Var}[X].
$$

As the number of trials increases, what happens to the variance of your estimate? Does that make sense?

▶ Therefore, as $n \to \infty$ it seems that $\overline{X}_n \to E[X]$. We will develop tools to formalize this (both in this course and in MATH/STAT 395).

Outline

[Distribution of a transformation of a RV \(](#page-4-0)§5.2)

[Motivation: Estimation from real data](#page-21-0)

[Concentration inequalities](#page-26-0)

Estimating tail probabilities: Motivation

- ▶ Convergence of the empirical mean will necessarily be stated in terms of probability
- ▶ Namely, we would like to show that as $n \to +\infty$, the probability that X_n differs from $E[X]$ tends to 0
- ▶ For that we'll need some tools to bound probabilities when we only know e.g. the mean/the variance of a RV
- \blacktriangleright That's what concentration inequalities are about

Concentration inequalities

First, we'll need the following result:

Theorem (Monotonicity of Expectation)

If two RVs X, Y defined on the same probability space (Ω, \mathcal{F}, P) have finite means and satisfy that $P(X \le Y) = 1$, then $E[X] \le E[Y]$.

Markov's Inequality

What can we say about the probability of X if we know $E[X]$?

Theorem (Markov's inequality)

If X is a non-negative RV with finite mean, then for any $c > 0$,

$$
P(X \geq c) \leq \frac{E[X]}{c}.
$$

Proof:

Markov's inequality

Example

A donut vendor sells on average 1000 donuts per day. Could he sell more than 1400 donuts tomorrow with probability greater than 0.8?

Markov's inequality

Example

- Let $X \sim \text{Ber}(p)$ for some $p \in (0,1)$.
	- 1. What is $P(X \ge 0.01)$?
	- 2. What does Markov's inequality give us?

Chebyshev's inequality

What can we say about the probability of X if we know both $E[X]$ and $Var(X)$?

Theorem (Chebyshev's Inequality)

If X is a RV with finite mean μ and finite variance σ^2 , then for any $c > 0$,

$$
P(|X - \mu| \geq c) \leq \frac{\sigma^2}{c^2}.
$$

Proof:

Note:

The event $\{|X - \mu| \ge c\}$ contains the events $\{X \ge \mu + c\}$ and $\{X \le \mu - c\}$ So we naturally have a bound on $P(X \ge \mu + c)$, $P(X \le \mu - c)$

Example

Example

A donut vendor sells on average 1000 donuts per day with a standard deviation A donut vendor sens on average 1000 donuts per day with $\sqrt{200}$. Given just this information, provide a bound on

- 1. the probability that he will sell between 950 and 1050 donuts tomorrow
- 2. the probability that he will sell at least 1400 donuts tomorrow