Chapter 3 Part 2: Random variables
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Mid-course feedback

Thank you for the feedback!
» Most said pace is fast

» Definitely! Accelerated course is very fast
» | will try to speak more slowly, leave slides up longer

» Most said homework difficulty is fine
» Study groups have been helpful

» Connecting new problems to ones we've already seen has been helpful
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Midterm: updated time

» Friday July 8th, 9-10am, CMU 230

» Bring one or more pens/pencils and a half-sheet of paper with whatever
handwritten notes you'd like

» | will provide blank paper and the exam instructions

» Not all problems are equal length
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Midterm work example

Two fair dice are rolled. What is the conditional probability that at least one
lands on 6 given that the dice land on different numbers?

Fine:
P(at least one 6, different)
P(different)
_ P{lst =6,2nd # 6} + P{1lst # 6,2nd = 6}
N 5/6

_ (1/6)-(5/6) + (1/6) - (5/6)
5/6

P(at least one 6 | different) =

1 . o
3 (this step not necessary unless specified)
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Midterm work example

Two fair dice are rolled. What is the conditional probability that at least one
lands on 6 given that the dice land on different numbers?

Not enough:

P(AN B)
P(B)
1

3

P(A|B) =
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Key integrals and derivatives

» Polynomials

» Exponential
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pmfs, pdfs, and cdfs
Discrete RVs
» Probability mass function (pmf)

p(k) = P(X = k) for all possible values k of X

» Cumulative distribution function (cdf)

F(s)=P(X<s)= > P(X
. ki k<s
Continuous RVs

» Cumulative distribution function (cdf)
F(S):P(XSS):/ f(x)dx forallseR

» Probability density function (pdf)

s

f such that P(X <s) = / f(x)dx forallseR

Other RVs
» Cumulative distribution function (cdf)

F(s)=P(X <s) forallseR
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Do discrete and continuous RVs partition the space of possible RVs?

» If F is piece-wise constant
— it is the cdf of a discrete RV
» If F is continuous
— it is the cdf of a continuous RV

» If F is discontinuous and not piece-wise constant
= neither discrete nor continuous RV

» but we can still compute probabilities using the cdf
> e.g. mixtures of distributions

The cdf exists for any RV
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Try at home

» Go through the examples we covered in lecture last time

> Pick some of the simpler distributions we've covered (flipping a coin,
rolling a fair die, binomial, uniform, exponential)
» Graph and write the pmf/pdf and cdf
» Do it in whatever order makes sense to you, then try doing it in a different
order
» How could you tell the cdf from the pmf/pdf?
»> How could you tell the pmf/pdf from the cdf?
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Why did we introduce the cdf?

Theoretical reason

» We only need P(X < t) for any t to compute any prob. measure
» Therefore the cdf is sufficient for our purposes

Practical reason

» The cdf itself is a prob. so we can use classical rules of prob. to
manipulate it

» On the other hand the pdf is just a function and sometimes it is not
practical or does not exist
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Why did we introduce the cdf?

Example

Let X ~ Expo(A), Y ~ Expo(u) be independent.

What is the pdf of M = min(X, Y)?

Recall that Fx(t) =1 — e,

Tips:
> Notice that event {min{X, Y} > t} is equivalent to {X > t} N {Y > t}
» Find the cdf of M, then use it to find the pdf
» What is the name of the distribution of M?
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Tips on probability distributions

Wikipedia pages on probability distributions are a great resource!

» Check out the distributions from class (binomial, uniform, exponential,
etc.)

» Shows pmf/pdf, cdf, and lots of other properties

» Presents definitions and applications, connections to other distributions,
and sometimes some history

» You can explore some new distributions you haven't seen before too
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Expectation

Motivation
» Given a RV, we have numerous tools to compute probabilities

» We said that we also sometimes want to know what kind of result we
expect on average, a “typical value” for a given RV

» e.g. if you flip a coin n times, what is the average number of tails you
should get?

» In probability, this “average” number is called an expectation and it is a
central object
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Intuition

Example
At a casino, suppose
> you lose 1$ 90% of the time,
> you gain 10$ 9% of the time, and
» you gain 100% 1% of the time.
What is your expected net gain?

» First understand that the average is a number not a probability
» Then

90 9 1
ted net gain= (—-1) - — 10- — +100- — =1
expected net gain ( 100 + 100 + 100

net gain frequency
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Expectation of a discrete RV

Definition
The expectation or mean of a discrete random variable Y is defined by

E(Y) =) kP(X = k).
k

Expectation is often written with square brackets, E[Y].

Example
What is the expectation of X ~ Ber(p)?

Link between expectation and probability
» For an event A C Q the indicator RV of A (denoted 1a(w) or la(w)) is

1 ifweA,
1 =
Aw) {0 ifw ¢ A

> 14~ Ber(P(A)) (since P(14 =1) = P(w € A))
» Therefore
E[14] = P(A).
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Expectation of a continuous RV
For continuous random variables, we replace the sum over the pmf with an
integral over the pdf:

Definition
Suppose Y is a continuous random variable with pdf f. Then the expectation
or mean of Y (often denoted py) is defined by

E[Y] = /oo yf(y)dy.

Example
Let X ~ [a, b]. Find E[X].
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Comments on expectations

> Expectation can be infinite or undefined (see book examples)

» Expectation can be seen as the “center of mass” of the distribution

Figure: Figure 3.8 from the textbook
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Expectation of a function of a RV

If we know the distribution of a RV X and now we are interested in a RV
Y = g(X) for some function g, do we have to compute the distribution and
expectation from scratch? No.

Theorem
Let X be a RV that takes values in X and g : X — R be some function.
Elg(X)] = g(k)p(k) if X is discrete with pmf p,
kex
+oo
Elg(X)] = / g(x)f(x)dx if X is continuous with pdf f.

Proof of discrete case:

Later, we will cover how to derive the distribution of Y from the dist. of X
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Linearity of expectation

Theorem
1. For any random variable X and any a, b € R, E[aX + b] = aE[X] + b.

2. If X, Y are random variables on the same probability space, then
E[X + Y] = E[X] + EY].

3. Let Xi,..., X, be n random variables defined on the same probability space
and gi, ..., g8n be n functions. Then

Elgi(X1) + - + gn(Xa)] = Elg1(X1)] + ... + Elgn(Xn)]

Example
Using the linearity of expectation, compute the expectation of X ~ Bin(n, p).
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Linearity of expectation

Example
Anne has three 4-sided dice, two 6-sided dice and one 12-sided die. All the dice
are fair and numbered 1, 2, ..., n for n = 4,6, or 12. She rolls all the dice and

adds up the numbers showing. What is the expected value of the sum?
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Variance

Motivation
» The expectation summarizes the RV to a single point
» Generally the distribution should gather around the mean, but how much?

» The variance informs us about the dispersion of the RV around the mean
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Variance

Definition
The variance of a random variable X with mean p is defined as

Var(X) = E [(x - u)z]

Var(X) is often denoted o%.
The square root ox of the variance is called the standard deviation.
In terms of pmf or pdf, we have that

Var(X) = Z(x — 1)’p(k) for a discrete RV with pmf p,
kex

“+oo
Var(X) = / (x — p)’f(x)dx  for a continuous RV with pdf f.

—o0

Note:
» Variance is defined through the expectation of a function of the RV
» This is true of many characteristics of a RV: expectation is our main tool

» As with expectation, the variance may be finite, infinite or undefined
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Variance

Definition
The variance of a random variable X with mean p is defined as

Var(X) = E [(x - u)2]

Var(X) is often denoted o%.
The square root ox of the variance is called the standard deviation.
In terms of pmf or pdf, we have that

Var(X) = Z(x — u)’p(k) for a discrete RV with pmf p,
kex

+oo
Var(X) = / (x — p)*F(x)dx for a continuous RV with pdf f.

Example
If X ~ Ber(p), what is Var(X)?

21/35



Variance: another way to compute

Sometimes this is an easier way to compute the variance:
Lemma
The variance of a RV X can also be expressed as

Var(X) = E[X?] — E[X]°.

Proof:
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Variance: example

Example

Let X ~ Unif(a, b) with a < b. What do you think should happen to the
variance as the width of the interval increases? Find Var(X); does that happen
in your solution?
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Moments

Definition
The nth moment of a RV X is

E[X"].
The nth centered moment of a RV X is

E[(X — E[X])"]

Notes
> 1st moment: mean
2nd moment: mean square

| 2
» 2nd centered moment: variance
»

3rd centered moment: kurtosis

» Tells us about asymmetry of RV
» 0 if RV is symmetric

Moments are explored in more detail in MATH/STAT 395

v
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Variance properties

Motivation

» Variance is not linear! Instead we have the following property:

Lemma
Fora RV X and a, b € R,

Var(aX + b) = a* Var(X).

Proof:

Takeaways:

» Adding a constant to the RV does not change the variance

» o.xt+6 = y/Var(aX + b) = aox

» Standard deviation o has the same 'units’ as the RV or the mean, while
variance o2 has squared units
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Null variance

Motivation
» The following theorem formalizes the intuition that if a RV does not vary
(i.e. Var(X) = 0) then it must be a constant

Theorem
For a RV X, Var(X) = 0 if and only if P(X = a) = 1 for some constant a € R.

Proof:
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Expectation of product of independent RVs
Remember:
» Xi,..., X, are independent if for any (Borel) sets By, ..., B, € R,
P(Xi € Bi,...,Xn € B,) = P(Xy € By)... P(X» € By).
» For an indicator RV, E[14] = P(A) for AC Q
Another characterization of independent RV:

1 ifxeB

» Denote hi(x;) = {O ifx ¢ B
IT X i

1 ifxi €Bi,...,x, € By

» Note that hi(x1) ... ha(xn) = {0 otherwise

» Previous definition can be written as
E[h(X1) ... ha(Xn)] = E[M(X1)] ... E[ha(X0)].

» Namely, for independent Xi, ..., X,, the expectation of a product of some
functions of RV is equal to the product of the expectation.
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Expectation of product of independent RV

Motivation:
As any function can be decomposed/approximated by indicator RVs, we get
the following theorem:

Theorem

Xi,..., X, are independent if and only if for any functions hi, ..., h,,
E[hi(X1) ..., ha(Xn)] = E[hi(X1)] - .. E[hn(Xn)]-

Corollary

If X, Y are independent, then
Var(X + Y) = Var(X) + Var(Y).
Questions:

> If X,Y,Z are independent, is E[XYZ] = E[X]E[Y]E[Z]?
> If E[XYZ] = E[X]E[Y]E[Z], are X, Y, Z independent?
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Variance of independent RV

The variance result can be generalized as follows.

Theorem
If Xi,..., X, are independent, then

Var(X1 + ...+ Xp) = Var(X1) + ... + Var(X,).

Example
What is the variance of X ~ Bin(n, p)?
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Median

Motivation
» The expectation often gives a good summary of a RV

» Yet, if the RV has some abnormally large values, the expectation may be a
bad indicator of where the center of the distribution lies

» Another indicator is often used: the median that tells us where to split the
distribution of X to have equal mass on the left and right sides of the
median
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Median of a continuous RV

Definition
The median of a continuous RV X is a value m s.t.

PX>m)=P(X<m)=1/2

Example
At a call center, a phone call arrives on average every 5 min (model it as an
exponential RV). What is the median time to wait for a call?
> The pdfis f(x) = Ae™** for x > 0 and 0 otherwise with A = 1/5 (since
E[X]=1/XA=5).
» To compute the median, it suffices to use the cdf. We want m such that
Fx(m)=1/2.
> Since Fx(t) = e >, we get that m = — log(1/2)/\ ~ 3.47.
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Median of discrete RV

Example
Consider X uniformly distributed on {—1,0, 1} (discrete uniform).
How can we define a median for X?

» Here there does not exist ms.t. P(X < m)=P(X >m)=1/2.

> For example P(X < 0) =2/3 and P(X > 0) =2/3.

» The problem is that here 0 takes some probability mass so we need to
slightly change the definition of a median in the discrete case

Definition
Generally, a median of a RV X is any value m such that

P(X>m)>1/2 P(X<m)>1/2

So in the above example, 0 would be a median.

32/35



Median

Example
Let X be uniformly distributed on {—100,1,2,3,...9}. So X has a prob. dist.

P(X = —100) = 1/10, P(X =k)=1/10 for k € {1,...9}
What are the expectation and the median of X?

» E[X]=-100-1/10+(1+2+...49)-1/10=-55
» On the other hand,

P(X < 4.5) = p(—100) + p(1) + p(2) + p(3) + p(4) = 1/2
P(X >45)=p(5)+...+p(9) =1/2

> So 4.5 is a median for X

> Any m € [4,5] is a median for X; we usually take the mid-point of the
interval

> A median (e.g. 4.5) illustrates much better than the mean (-5.5) the fact
that 90% of the possible values are in {1,...,9}

» The mean better represents the center of (probability) mass
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Quantiles

Motivation
» Let's generalize the median

» Typically we would like to know if some observation of our RV is rare or
not

» Namely we would like to have access to a value x, such that if X > x then
the probability of this observation is small

» This is formalized with the definitions of quantiles
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Quantiles

Definition
Given 0 < p < 1 (e.g. p=90/100), the p* quantile of a continuous RV X is
any value x, such that

P(X <x)=p P(X=x)=1-p

More generally the p™ quantile of a RV X is any value x, such that

P(X<x)>p P(X > x,) >1—p.

Notes
» p =1/2: we retrieve the median! (i.e. median = 0.5th quantile or 50th
percentile)

> p =190/100: the 90" quantile tells us that there is less than 10% chance
of observing a value greater than x,

» In the second definition, we want to take into account values of x, that
could have a non-zero mass but still satisfy the idea of a quantile.
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