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Mid-course feedback

Thank you for the feedback!
▶ Most said pace is fast

▶ Definitely! Accelerated course is very fast
▶ I will try to speak more slowly, leave slides up longer

▶ Most said homework difficulty is fine

▶ Study groups have been helpful

▶ Connecting new problems to ones we’ve already seen has been helpful
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Midterm: updated time

▶ Friday July 8th, 9-10am, CMU 230

▶ Bring one or more pens/pencils and a half-sheet of paper with whatever
handwritten notes you’d like

▶ I will provide blank paper and the exam instructions

▶ Not all problems are equal length
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Midterm work example

Two fair dice are rolled. What is the conditional probability that at least one
lands on 6 given that the dice land on different numbers?

Fine:

P(at least one 6 | different) = P(at least one 6, different)

P(different)

=
P{1st = 6, 2nd ̸= 6}+ P{1st ̸= 6, 2nd = 6}

5/6

=
(1/6) · (5/6) + (1/6) · (5/6)

5/6

=
1

3
. (this step not necessary unless specified)
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Midterm work example

Two fair dice are rolled. What is the conditional probability that at least one
lands on 6 given that the dice land on different numbers?

Not enough:

P(A | B) =
P(A ∩ B)

P(B)

=
1

3
.
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Key integrals and derivatives

▶ Polynomials

▶ Exponential
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pmfs, pdfs, and cdfs
Discrete RVs

▶ Probability mass function (pmf)

p(k) = P(X = k) for all possible values k of X

▶ Cumulative distribution function (cdf)

F (s) = P(X ≤ s) =
∑

k: k≤s

P(X = k)

Continuous RVs

▶ Cumulative distribution function (cdf)

F (s) = P(X ≤ s) =

∫ s

−∞
f (x)dx for all s ∈ R

▶ Probability density function (pdf)

f such that P(X ≤ s) =

∫ s

−∞
f (x)dx for all s ∈ R

Other RVs

▶ Cumulative distribution function (cdf)

F (s) = P(X ≤ s) for all s ∈ R
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Do discrete and continuous RVs partition the space of possible RVs?

▶ If F is piece-wise constant
=⇒ it is the cdf of a discrete RV

▶ If F is continuous
=⇒ it is the cdf of a continuous RV

▶ If F is discontinuous and not piece-wise constant
=⇒ neither discrete nor continuous RV
▶ but we can still compute probabilities using the cdf
▶ e.g. mixtures of distributions

The cdf exists for any RV
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Try at home

▶ Go through the examples we covered in lecture last time
▶ Pick some of the simpler distributions we’ve covered (flipping a coin,

rolling a fair die, binomial, uniform, exponential)
▶ Graph and write the pmf/pdf and cdf
▶ Do it in whatever order makes sense to you, then try doing it in a different

order
▶ How could you tell the cdf from the pmf/pdf?
▶ How could you tell the pmf/pdf from the cdf?
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Why did we introduce the cdf?

Theoretical reason

▶ We only need P(X ≤ t) for any t to compute any prob. measure

▶ Therefore the cdf is sufficient for our purposes

Practical reason

▶ The cdf itself is a prob. so we can use classical rules of prob. to
manipulate it

▶ On the other hand the pdf is just a function and sometimes it is not
practical or does not exist
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Why did we introduce the cdf?

Example

Let X ∼ Expo(λ),Y ∼ Expo(µ) be independent.
What is the pdf of M = min(X ,Y )?
Recall that FX (t) = 1− e−λt .

Tips:

▶ Notice that event {min{X ,Y } > t} is equivalent to {X > t} ∩ {Y > t}
▶ Find the cdf of M, then use it to find the pdf

▶ What is the name of the distribution of M?
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Tips on probability distributions

Wikipedia pages on probability distributions are a great resource!

▶ Check out the distributions from class (binomial, uniform, exponential,
etc.)

▶ Shows pmf/pdf, cdf, and lots of other properties

▶ Presents definitions and applications, connections to other distributions,
and sometimes some history

▶ You can explore some new distributions you haven’t seen before too
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Expectation

Motivation

▶ Given a RV, we have numerous tools to compute probabilities

▶ We said that we also sometimes want to know what kind of result we
expect on average, a “typical value” for a given RV

▶ e.g. if you flip a coin n times, what is the average number of tails you
should get?

▶ In probability, this “average” number is called an expectation and it is a
central object
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Intuition

Example

At a casino, suppose

▶ you lose 1$ 90% of the time,

▶ you gain 10$ 9% of the time, and

▶ you gain 100$ 1% of the time.

What is your expected net gain?

▶ First understand that the average is a number not a probability

▶ Then

expected net gain = (−1)︸ ︷︷ ︸
net gain

· 90

100︸︷︷︸
frequency

+10 · 9

100
+ 100 · 1

100
= 1
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Expectation of a discrete RV

Definition
The expectation or mean of a discrete random variable Y is defined by

E(Y ) =
∑
k

kP(X = k).

Expectation is often written with square brackets, E [Y ].

Example

What is the expectation of X ∼ Ber(p)?

Link between expectation and probability

▶ For an event A ⊆ Ω the indicator RV of A (denoted 1A(ω) or IA(ω)) is

1A(ω) =

{
1 if ω ∈ A,

0 if ω /∈ A.

▶ 1A ∼ Ber(P(A)) (since P(1A = 1) = P(ω ∈ A))

▶ Therefore
E[1A] = P(A).
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Expectation of a continuous RV

For continuous random variables, we replace the sum over the pmf with an
integral over the pdf:

Definition
Suppose Y is a continuous random variable with pdf f . Then the expectation
or mean of Y (often denoted µY ) is defined by

E [Y ] =

∫ ∞

−∞
yf (y)dy .

Example

Let X ∼ [a, b]. Find E[X ].
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Comments on expectations

▶ Expectation can be infinite or undefined (see book examples)

▶ Expectation can be seen as the “center of mass” of the distribution

Figure: Figure 3.8 from the textbook
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Expectation of a function of a RV

If we know the distribution of a RV X and now we are interested in a RV
Y = g(X ) for some function g , do we have to compute the distribution and
expectation from scratch? No.

Theorem
Let X be a RV that takes values in X and g : X → R be some function.

E[g(X )] =
∑
k∈X

g(k)p(k) if X is discrete with pmf p,

E[g(X )] =

∫ +∞

−∞
g(x)f (x)dx if X is continuous with pdf f .

Proof of discrete case:

Later, we will cover how to derive the distribution of Y from the dist. of X
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Linearity of expectation

Theorem

1. For any random variable X and any a, b ∈ R, E[aX + b] = aE[X ] + b.

2. If X ,Y are random variables on the same probability space, then
E[X + Y ] = E[X ] + E[Y ].

3. Let X1, ...,Xn be n random variables defined on the same probability space
and g1, ..., gn be n functions. Then

E[g1(X1) + ...+ gn(Xn)] = E[g1(X1)] + ...+ E[gn(Xn)].

Example

Using the linearity of expectation, compute the expectation of X ∼ Bin(n, p).
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Linearity of expectation

Example

Anne has three 4-sided dice, two 6-sided dice and one 12-sided die. All the dice
are fair and numbered 1, 2, ..., n for n = 4, 6, or 12. She rolls all the dice and
adds up the numbers showing. What is the expected value of the sum?

18 / 35



Outline

Mid-course feedback, midterm example

Wrap up cdfs (with practice)

(Great) Expectations

Variance

Median and quantiles



Variance

Motivation

▶ The expectation summarizes the RV to a single point

▶ Generally the distribution should gather around the mean, but how much?

▶ The variance informs us about the dispersion of the RV around the mean
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Variance

Definition
The variance of a random variable X with mean µ is defined as

Var(X ) = E
[
(X − µ)2

]
Var(X ) is often denoted σ2

X .
The square root σX of the variance is called the standard deviation.
In terms of pmf or pdf, we have that

Var(X ) =
∑
k∈X

(x − µ)2p(k) for a discrete RV with pmf p,

Var(X ) =

∫ +∞

−∞
(x − µ)2f (x)dx for a continuous RV with pdf f .

Note:

▶ Variance is defined through the expectation of a function of the RV

▶ This is true of many characteristics of a RV: expectation is our main tool

▶ As with expectation, the variance may be finite, infinite or undefined
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Variance

Definition
The variance of a random variable X with mean µ is defined as

Var(X ) = E
[
(X − µ)2

]
Var(X ) is often denoted σ2

X .
The square root σX of the variance is called the standard deviation.
In terms of pmf or pdf, we have that

Var(X ) =
∑
k∈X

(x − µ)2p(k) for a discrete RV with pmf p,

Var(X ) =

∫ +∞

−∞
(x − µ)2f (x)dx for a continuous RV with pdf f .

Example

If X ∼ Ber(p), what is Var(X )?
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Variance: another way to compute

Sometimes this is an easier way to compute the variance:

Lemma
The variance of a RV X can also be expressed as

Var(X ) = E[X 2]− E[X ]2.

Proof:
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Variance: example

Example

Let X ∼ Unif(a, b) with a < b. What do you think should happen to the
variance as the width of the interval increases? Find Var(X ); does that happen
in your solution?
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Moments

Definition
The nth moment of a RV X is

E[X n].

The nth centered moment of a RV X is

E[(X − E[X ])n]

Notes

▶ 1st moment: mean

▶ 2nd moment: mean square

▶ 2nd centered moment: variance
▶ 3rd centered moment: kurtosis

▶ Tells us about asymmetry of RV
▶ 0 if RV is symmetric

▶ Moments are explored in more detail in MATH/STAT 395
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Variance properties

Motivation

▶ Variance is not linear! Instead we have the following property:

Lemma
For a RV X and a, b ∈ R,

Var(aX + b) = a2Var(X ).

Proof:

Takeaways:

▶ Adding a constant to the RV does not change the variance

▶ σaX+b =
√

Var(aX + b) = aσX

▶ Standard deviation σ has the same ’units’ as the RV or the mean, while
variance σ2 has squared units
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Null variance

Motivation

▶ The following theorem formalizes the intuition that if a RV does not vary
(i.e. Var(X ) = 0) then it must be a constant

Theorem
For a RV X, Var(X ) = 0 if and only if P(X = a) = 1 for some constant a ∈ R.
Proof:
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Expectation of product of independent RVs

Remember:

▶ X1, . . . ,Xn are independent if for any (Borel) sets B1, . . . ,Bn ∈ R,

P(X1 ∈ B1, . . . ,Xn ∈ Bn) = P(X1 ∈ B1) . . .P(Xn ∈ Bn).

▶ For an indicator RV, E[1A] = P(A) for A ⊆ Ω

Another characterization of independent RV:

▶ Denote hi (xi ) =

{
1 if x ∈ Bi

0 if x /∈ Bi

▶ Note that h1(x1) . . . hn(xn) =

{
1 if x1 ∈ B1, . . . , xn ∈ Bn

0 otherwise

▶ Previous definition can be written as

E[h1(X1) . . . hn(Xn)] = E[h1(X1)] . . .E[hn(Xn)].

▶ Namely, for independent X1, . . . ,Xn, the expectation of a product of some
functions of RV is equal to the product of the expectation.
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Expectation of product of independent RV

Motivation:
As any function can be decomposed/approximated by indicator RVs, we get
the following theorem:

Theorem
X1, . . . ,Xn are independent if and only if for any functions h1, . . . , hn,

E[h1(X1) . . . , hn(Xn)] = E[h1(X1)] . . .E[hn(Xn)].

Corollary

If X ,Y are independent, then

Var(X + Y ) = Var(X ) + Var(Y ).

Questions:

▶ If X ,Y ,Z are independent, is E[XYZ ] = E[X ]E[Y ]E[Z ]?

▶ If E[XYZ ] = E[X ]E[Y ]E[Z ], are X ,Y ,Z independent?
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Variance of independent RV

The variance result can be generalized as follows.

Theorem
If X1, . . . ,Xn are independent, then

Var(X1 + . . .+ Xn) = Var(X1) + . . .+ Var(Xn).

Example

What is the variance of X ∼ Bin(n, p)?
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Median

Motivation

▶ The expectation often gives a good summary of a RV

▶ Yet, if the RV has some abnormally large values, the expectation may be a
bad indicator of where the center of the distribution lies

▶ Another indicator is often used: the median that tells us where to split the
distribution of X to have equal mass on the left and right sides of the
median
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Median of a continuous RV

Definition
The median of a continuous RV X is a value m s.t.

P(X ≥ m) = P(X ≤ m) = 1/2

Example

At a call center, a phone call arrives on average every 5 min (model it as an
exponential RV). What is the median time to wait for a call?

▶ The pdf is f (x) = λe−λx for x ≥ 0 and 0 otherwise with λ = 1/5 (since
E[X ] = 1/λ = 5).

▶ To compute the median, it suffices to use the cdf. We want m such that
FX (m) = 1/2.

▶ Since FX (t) = e−λt , we get that m = − log(1/2)/λ ≈ 3.47.
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Median of discrete RV

Example

Consider X uniformly distributed on {−1, 0, 1} (discrete uniform).
How can we define a median for X?

▶ Here there does not exist m s.t. P(X ≤ m) = P(X ≥ m) = 1/2.

▶ For example P(X ≤ 0) = 2/3 and P(X ≥ 0) = 2/3.

▶ The problem is that here 0 takes some probability mass so we need to
slightly change the definition of a median in the discrete case

Definition
Generally, a median of a RV X is any value m such that

P(X ≥ m) ≥ 1/2 P(X ≤ m) ≥ 1/2

So in the above example, 0 would be a median.

32 / 35



Median

Example

Let X be uniformly distributed on {−100, 1, 2, 3, . . . 9}. So X has a prob. dist.

P(X = −100) = 1/10, P(X = k) = 1/10 for k ∈ {1, . . . 9}

What are the expectation and the median of X?

▶ E[X ] = −100 · 1/10 + (1 + 2 + . . .+ 9) · 1/10 = −5.5

▶ On the other hand,

P(X ≤ 4.5) = p(−100) + p(1) + p(2) + p(3) + p(4) = 1/2

P(X ≥ 4.5) = p(5) + . . .+ p(9) = 1/2

▶ So 4.5 is a median for X

▶ Any m ∈ [4, 5] is a median for X ; we usually take the mid-point of the
interval

▶ A median (e.g. 4.5) illustrates much better than the mean (-5.5) the fact
that 90% of the possible values are in {1, . . . , 9}

▶ The mean better represents the center of (probability) mass
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Quantiles

Motivation

▶ Let’s generalize the median

▶ Typically we would like to know if some observation of our RV is rare or
not

▶ Namely we would like to have access to a value x , such that if X ≥ x then
the probability of this observation is small

▶ This is formalized with the definitions of quantiles
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Quantiles

Definition
Given 0 ≤ p ≤ 1 (e.g. p = 90/100), the pth quantile of a continuous RV X is
any value xp such that

P(X ≤ xp) = p P(X ≥ xp) = 1− p

More generally the pth quantile of a RV X is any value xp such that

P(X ≤ xp) ≥ p P(X ≥ xp) ≥ 1− p.

Notes

▶ p = 1/2: we retrieve the median! (i.e. median = 0.5th quantile or 50th
percentile)

▶ p = 90/100: the 90th quantile tells us that there is less than 10% chance
of observing a value greater than xp

▶ In the second definition, we want to take into account values of xp that
could have a non-zero mass but still satisfy the idea of a quantile.
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