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Midterm logistics and rules

▶ Next week Friday July 8, 8:30-9:30am, in CMU 230 (our usual classroom)

▶ What I will give you: printed instructions and blank paper for you to write
on

▶ What you should bring: a pencil or pen (perhaps multiple)

▶ What you can also bring: a half sheet of paper (cut an 8.5x11 sheet in
half) with whatever handwritten notes you want to add to it on both sides

▶ Closed book: no calculators, computers, phones, textbook, notes, etc.
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Midterm instructions

▶ Make sure to show your work, show your steps/logic
▶ This is somewhat subjective as is life, but use your judgment

▶ Use notation from class, and define any variables/symbols that you use in
your solution that were not in the problem (such as variables for particular
events)

▶ For some of the problems the instructions will say to fully simplify your
answer

▶ For the rest, you do not need to finish simplifying once you have plugged
in the numbers, but you do need to have shown your work justifying why
that calculation would lead to the correct answer
▶ And sometimes simplifying can help you check your work
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Tips for during the midterm exam

▶ Breathe- you did you preparation, and you know things!

▶ Before you start, quickly skim through the whole exam first to get a sense
for what problems are easier/harder, how much you have to do, etc.

▶ Don’t necessarily solve them in order

▶ Make sure to give some time to each problem

▶ Budget a couple minutes at the end so that if there are any problems you
didn’t have time to finish, you can write down what you know and some of
the steps you think will be involved

▶ Make your work legible and your reasoning clear, but don’t get too hung
up making it perfect
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Tips for preparing for the midterm exam

▶ The problems will be similar to the HW1 and HW2 problems
▶ Review the homework

▶ Go through the solutions to understand what you missed
▶ Try doing them again, fresh
▶ Try similar problems from the textbook or that you make up

▶ Review the lecture slides/notes, both results and examples

▶ Answer the Chapter 1 and Chapter 2 recap questions I put in the slides
(Chapter 2 recap is today); these will help refine your understanding

▶ About enumerating outcomes
▶ On the midterm, you will not have time to solve problems by enumerating

all possible outcomes in the sample space
▶ The goal is to learn how to use the tools we covered in class to solve these

more efficiently
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Upcoming deadlines and mid-course survey

▶ HW 2 due tonight (Fri July 1)

▶ Lectures: start Chapter 3 today, finish Chapter 3 next Wed July 6

▶ HW 3 (on Chapter 3) will be posted today, due Mon July 11 (after
midterm)

▶ Midterm (Chapters 1-2) on Fri July 8

Anonymous mid-course feedback survey: click here or see Ed Discussion
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Review of Chapter 2: for your practice

▶ Define or write out in math each of the following, and give an example of
how you use each one in a problem (teach yourself fresh what these things
are and how to use them)
▶ Conditional probability
▶ Multiplication rule
▶ Law of total probability
▶ Bayes’ formula
▶ (Mutual and pairwise) independence of events
▶ Random variable (RV)
▶ Discrete random variable
▶ Probability mass function
▶ Conditional independence
▶ Independence of discrete random variables

▶ Give two examples of experiments that can be modeled as a series of
independent trials (you will not be asked to prove whether random
variables are identically distributed on the midterm)

▶ How do you prove that two random variables are independent? Not
independent?

▶ Write the pmfs of the discrete distributions we covered and apply them to
a simple example.
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Recall: discrete random variables

▶ A random variable (RV for short) X is discrete if ∃ a finite or countably
infinite set {k1, k2, ...} of real numbers such that

∑
i P(X = ki ) = 1

▶ This set is the set of possible values of X

▶ The probability mass function (pmf) of a discrete random variable X is the
function p (or pX ) defined by p(k) = P(X = k) for all possible values k of
X
▶ The pmf completely determines the probability distribution of X : it tells us

the probability of every possible value of X

▶ Therefore,
∑

k p(k) = 1

▶ How many probabilities do you have to define for a random variable that
represents the number of heads in 5 tosses of the same coin?
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Degenerate random variables

Definition
A random variable is degenerate if ∃ b ∈ R such that P(X = b) = 1.

Example

Consider drawing a number uniformly at random from the interval [0, 10].

▶ Define a random variable X such that X is degenerate.
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Continuous random variables: Motivation

▶ What about random variables (functions from Ω to R) that can take
uncountably infinitely many values?
▶ e.g. temperature, height, time until an event occurs, ...

▶ What we would like is an easy way to compute P(X ∈ [a, b]) for any a ≤ b

▶ Is there something like the pmf in this case?
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Motivation

Example
Let X be the height of a random 10-year-old child
▶ X is a continuous random variable, because the set of its possible values is

uncountable

▶ How could I represent the probability dist?

▶ Suppose you have data on N = 500 10-year-olds; split the data into n groups

gi = {childs with height between hi , hi + δ } for e.g. hi = i/100, δ = 1/100

and count the number in each group

▶ This is called a histogram

▶ Increase n and N → histogram tends to a function, which could be integrated to
give us probabilities
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Figure: Histograms of decreasing bin width

This tends to a function, and the probabilities could then be computed by
integrating this function!
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Probability density function

Definition
A random variable X is called continuous is there exists a function f s.t.

P(X ≤ b) =

∫ b

−∞
f (x)dx for all b ∈ R.

The function f is then called the probability density function (p.d.f.) of X .
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Probability density function: properties

Definition for reference: P(X ≤ b) =
∫ b

−∞ f (x)dx for all b ∈ R

▶ The probability of a single point is always zero!

P(X = c) =

∫ c

c

f (x)dx = 0

▶ Complement:

P(X > b) =

∫ +∞

b

f (x)dx

Proof: HW 3

▶ Notice that P(X ≥ b) = P(X > b) + P(X = 0) = P(X > b)

▶ The probability that X lies in an interval [a, b] is

P(a ≤ X ≤ b) =

∫ b

a

f (x)dx
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pmf vs pdf

Let’s compare and contrast these pmf and pdf functions:

Left: pmf pD of a discrete RV D

▶ Column at position a has height
pD(a)

▶ Sum of heights of blue bars =
P(a ≤ D ≤ b)

▶ pD(a) = P(D = a) ≥ 0

Right: pdf pC of a continuous RV C

▶ Column at position a has height
pC (a)

▶ Sum of heights of green bars =
P(a ≤ C ≤ b)

▶ pC (a) is not a probability! pC (a)
generally > 0 while P(C = a) = 0
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Example: Uniform distribution

We have already seen this classical continuous random variable, and now let’s
formalize it

Example

Draw a number N uniformly at random from the interval [2, 5].

▶ Define the pdf for this random variable N. What is P(N > 3)?

▶ Then generalize to the interval [a, b] for any a, b ∈ R, a < b.

Definition
A continuous RV X is uniform on [a, b] for a < b if X has the pdf

f (x) =

{
1

b−a
if x ∈ [a, b],

0 if x /∈ [a, b].

We write that X ∼ Unif([a, b]).
Note: this is one type of uniform distribution. E.g. what about shooting an arrow at a target?
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When is a function a probability density function?

How do we prove that some function f is a probability density function?

A function f is a pdf for some random variable out there (we may not have one
in mind) if and only if f satisfies the following conditions:

1. f (x) ≥ 0 ∀x ∈ R,
2.

∫∞
−∞ f (x)dx = 1.

Example

Prove that the uniform distribution is a pdf.
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Exponential random variable

Motivation

▶ Previously: the geometric distribution models the number of trials before a
success (e.g. number of rolls until a 6 appears)

▶ Can we define a similar RV but for continuous time to model how long we
wait for a bus to arrive?

Definition
A RV X is an exponential RV with parameter λ > 0 if it has a pdf of the form

f (x) =

{
λe−λx if x ≥ 0,

0 if x < 0.

We write that X ∼ Expo(λ).

Sanity check: Does the pdf of an exponential RV satisfy the conditions of
being a RV?
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Exponential distribution

Figure: The exponential distribution Expo(λ) for different choices of λ.
Image from wikipedia.
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Motivation and definition

▶ Discrete RVs have a pmf while continuous RVs have a pdf

▶ Can we define a type of function that represents the probability
distribution of any type of random variable?
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Cumulative distribution function

Definition
The cumulative distribution function (cdf) of a random variable X is defined
by

F (s) = P(X ≤ s) ∀ s ∈ R.

Example

Graph and define the cdf of a random variable X ∼ Bern(p).
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pmf, pdf, cdf: more examples

What other examples can we think of?
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pmf, pdf, cdf: more examples

What similarities, differences, patterns did you notice?
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Properties of the cdf
▶ The cdf is always strictly non-decreasing: F (a) ≤ F (b) for all a, b ∈ R

with a < b.
▶ Note: a function is monotonic if it is either strictly non-decreasing or

strictly non-increasing

▶ limt→−∞ F (t) = 0, limt→+∞ F (t) = 1

▶ The cdf is right-continuous
▶ For a function F , we denote, if it exists,

F (t+) = lim
s→t+

F (s) := lim
s→t
s>t

F (s) Right limit (from above)

F (t−) = lim
s→t−

F (s) := lim
s→t
s<t

F (s) Left limit (from below)

▶ For any given t ∈ R, F (t) = F (t+)

Figure: cdf of X ∼ Bin(2, 2/3). Black: right limit. White: left limit.
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Going from pdf or pmf to cdf

We can summarize the relationships we’ve seen so far:

Discrete: pmf to cdf
Sum all the probabilities of possible values of X that are less than or equal to s:

F (s) = P(X ≤ s) =
∑

k: k≤s

P(X = k)

Continuous: pdf to cdf
Integrate the density function over the interval (−∞, s):

F (s) = P(X ≤ s) =

∫ s

−∞
f (x)dx
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Going from cdf to pdf or pmf

▶ We saw how to go from pmf or pdf → cdf

▶ What about the other way around?

Example

Consider a random variable Z with cdf

F (z) =



0 z < 1,
1
7

1 ≤ z < 2,
4
7

2 ≤ z < 5,
5
7

5 ≤ z < 8,

1 z ≥ 8.

Graph this cdf and define the corresponding pmf pZ (z) or pdf fZ (z).
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Do discrete and continuous RVs partition the space of possible RVs?

▶ If F is piece-wise constant
=⇒ it is the cdf of a discrete RV

▶ If F is continuous
=⇒ it is the cdf of a continuous RV

▶ If F is discontinuous and not piece-wise constant
=⇒ neither discrete nor continuous RV
▶ but we can still compute probabilities using the cdf
▶ e.g. mixtures of distributions

The cdf exists for any RV
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Why did we introduce the cdf?

Theoretical reason

▶ We only need P(X ≤ t) for any t to compute any prob. measure

▶ Therefore the cdf is sufficient for our purposes

Practical reason

▶ The cdf itself is a prob. so we can use classical rules of prob. to
manipulate it

▶ On the other hand the pdf is just a function and sometimes it is not
practical or does not exist
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Why did we introduce the cdf?

Example

Let X ∼ Expo(λ),Y ∼ Expo(µ) be independent.
What is the pdf of M = min(X ,Y )?
Recall that FX (t) = 1− e−λt .

▶ We have that the event {min{X ,Y } > t} is equivalent to the event
{X > t} ∩ {Y > t}.

▶ Therefore

1− FM(t) = P(min(X ,Y ) > t) = P(X > t,Y > t)

= P(X > t)P(Y > t) (by independence)

= e−λte−µt = e−(λ+µ)t

▶ So the pdf of M is given as

fM(x) = F ′
M(x) = (1− e−(λ+µ)x)′ = (λ+ µ)e−(λ+µ)x

▶ In fact we recognize that M ∼ Expo(λ+ µ).
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Tips on mastering probability distributions

Wikipedia pages on probability distributions are a great resource for practice!

▶ Check out the distributions from class (binomial, uniform, exponential,
etc.)

▶ Shows pmf/pdf, cdf, and lots of other properties

▶ Presents definitions and applications, connections to other distributions,
and sometimes some history

▶ You can explore some new distributions you haven’t seen before too

28 / 31



Outline

About the midterm

Review of Chapter 2

Discrete vs. continuous random variables

Cumulative distribution function

(Great) Expectations



Expectation

Motivation

▶ Given a RV, we have numerous tools to compute probabilities

▶ We said that we also sometimes want to know what kind of result we
expect on average, a “typical value” for a given RV

▶ e.g. if you flip a coin n times, what is the average number of tails you
should get?

▶ In probability, this “average” number is called an expectation and it is a
central object
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Intuition

Example

At a casino, suppose

▶ you lose 1$ 90% of the time,

▶ you gain 10$ 9% of the time, and

▶ you gain 100$ 1% of the time.

What is your expected net gain?

▶ First understand that the average is a number not a probability

▶ Then

expected net gain = (−1)︸ ︷︷ ︸
net gain

· 90

100︸︷︷︸
frequency

+10 · 9

100
+ 100 · 1

100
= 1
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Expectation

Definition
The expectation or mean of a discrete random variable Y is defined by

E(Y ) =
∑
k

kP(X = k).

Expectation is often written with square brackets, E [Y ].
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