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Review of Chapter 1: for your practice

The midterm will cover Chapters 1-2. I’ll suggest a similar review after Ch. 2

As you review the material, make sure you are familiar with the terms and
notation we covered. You are not responsible for knowing about sigma-algebras
or a precise definition of the word “measure”.

1. What are the three components of a probability model? Propose a simple
experiment and illustrate how you would define a probability model for
that example.

2. Write in math: the probability of a union of pairwise disjoint events is the
sum of the probabilities of the individual events.

3. What are the two conditions we have to meet in order to use
P(A) = |A|/|Ω| to compute the probability of an event A?

4. Give an example of each of the three basic types of sampling mechanisms
we covered and explain how to compute the probability of an event.

5. Give an example of a countably infinite set and an uncountably infinite set.

6. If you draw a number uniformly at random from the interval [0, 5], what is
the probability you get a number greater than 3? What is the probability
you get the number 3?
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Review of Chapter 1: for your practice

7. How do you compute the probability of an event when the sample space
has uncountably many equally likely outcomes?

8. What is a partition and how can you use it to compute a probability? Give
an example of a partition of the real numbers.

9. What is the relationship between the probability of an event and the
probability of that event not happening? Give an example.

10. If B ⊆ C , what can you say about the relationship between P(B) and
P(C)? Give an example.

11. What is the inclusion-exclusion rule? Draw a Venn diagram and
demonstrate an example of how you can use this rule in practice.

12. What is de Morgan’s law?

You will not be expected to state or know the names of the rules/results we
covered like de Morgan’s law and the inclusion-exclusion rule, just what the
mathematical statements are, why they work, and how to use them.

2 / 29



Starting Chapter 2 today

Let’s dive in!
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Motivation

Additional information constrains the possible outcomes. How do we update
the probability model?

Example

Class will be held in one of three rooms, and you think Room 1 is twice as
likely as each of Rooms 2 or 3, which are equally likely.

Ω = {1, 2, 3}, 1

2
P(1) = P(2) = P(3)

=⇒ P(1) =
1

2
,P(2) = P(3) =

1

4
.

Now you learn that Room 3 is unavailable. Define the event B that class is in
either Room 1 or 2:

B = {1, 2}

What is the new probability measure P̃?

We know P̃(3) = 0 and let’s suppose that we still think Rooms 1 and 2 are
equally likely. Since probabilities must sum to 1, P̃(1) = P̃(2) = 1

2
.

4 / 29



Motivation

Before we have the information about Room 3,

P(B) = P(1) + P(2) =
3

4
.

Once we learn B has happened, we want to restrict to B (require that
P(B) = 1) and leave the other relative probabilities intact, so we divide by
P(B):

1 =
P(B)

P(B)
=

P(1) + P(2)

P(B)

Therefore we can define

P̃(1) =
P(1)

P(B)
, P̃(2) =

P(2)

P(B)
.
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Conditional probability: definition

Definition
Let B be an event in the sample space Ω such that P(B) > 0. Then for all
events A the conditional probability of A given B is defined as

P(A | B) =
P(AB)

P(B)
.

Notes:

▶ In this section we will often use the following shorthand notation for
intersections: AB for A ∩ B, ABC for A ∩ B ∩ C .

▶ P(B) must be greater than zero; otherwise we are conditioning on
something impossible

In our previous example,

P̃(1) = P(Room 1 | Room 1 or 2) =
P({1} and {1, 2})

P({1, 2}) =
P({1})
P({1, 2}) =

P(1)

P(B)
.
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An example

Example

We have an urn containing 4 red and 6 green balls. We draw a sample of three
without replacement. Find the probability that the sample contains exactly 2
red balls given that at least one ball in the sample is red.
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Some properties

Be careful:
P(A | B) ̸= P(B | A)

P(suspect is guilty | evidence) ̸= P(evidence | suspect is guilty)

Properties of conditional probability

1. P(A | A) =?

2. P(A | Ω) =?

3. P(Ac | A) =?

4. P(Ac | B) =?

Generally:
Given B s.t. P(B) > 0, then P(· | B) : A→ P(A | B) is a probability measure
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Multiplication rule

Sometimes conditional probability is easier to use if we multiply through by
P(B):

P(AB) = P(B)P(A|B)

Multiplication rule: For n events A1, ...,An, if the conditional probabilities
below make sense for the problem, then

P(A1, ...,An) = P(A1)P(A2|A1)P(A3|A1A2) · · · P(An|A1 · · · An).
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An example

Example

We have an urn containing 8 red balls and 4 white balls. We draw two without
replacement. What is the probability that both are red?

Our previous approach: define the event of interest as A = {both balls are red}.
Then we would compute |A| and |Ω| and compute P(A):

|A| =

(
8

2

)
=

8!

6!2!
=

8 · 7
2

, |Ω| =

(
12

2

)
=

12!

10!2!
=

12 · 11
2

,

and

P(A) =
8 · 7

12 · 11 =
14

33
.

Using conditional probability: Let

R1 = {first draw is red}, R2 = {second draw is red}.

Then A = R1R2 and

P(R1R2) = P(R1)P(R2|R1) =
8

12
· 7

11
=

14

33
.

10 / 29



Combining what we’ve learned

Example

You have two urns: Urn 1 contains 2 green balls and 1 red ball. Urn 2 contains
2 red balls and 3 yellow balls. You perform a two-stage experiment:
Stage 1: Select an urn with equal probability
Stage 2: Draw 1 ball uniformly at random from that urn

P({red}) =?

Extra practice: P({yellow}) =? P({green}) =?
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Law of total probability

This was an example of a very useful result called the law of total probability:
If B1, ...,Bn is a partition of Ω with P(Bi ) > 0 ∀ i = 1, ..., n, then for any event
A we have

P(A) =
n∑

i=1

P(ABi ) =
n∑

i=1

P(A|Bi )P(Bi ).
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Motivation

Think about the two-stage urn problem again

▶ We answered P(red) by accounting for the possibilities that the ball comes
from Urn 1 or Urn 2

▶ Now let’s ask, if you draw a red ball, what is the probability that it came
from Urn 1?

=⇒ conditional probabilities as evidence for comparing competing
explanations for an observed event

P(Urn I | red) = cond. prob.

= cond. prob.

= law of total prob.

= (final answer)
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Bayes’ formula

General statements of what we just did:

Bayes’ formula: If P(A),P(B),P(Bc) > 0, then

P(B | A) = P(AB)

P(A)
=

P(A | B)P(B)

P(A | B)P(B) + P(A | Bc)P(Bc)
.

We can go further than B and Bc . If B1, ...,Bn partition the sample space Ω
and P(Bi ) > 0 for all i , then for any event A with P(A) > 0, and any
k = 1, ..., n,

P(Bk | A) =
P(ABk)

P(A)
=

P(A | Bk)P(Bk)∑n
i=1 P(A | Bi )P(Bi )

.

▶ A is our additional information

▶ P(Bk) for k = 1, ..., n are called prior probabilities (beliefs before
additional information A is collected)

▶ P(Bk | A) for k = 1, ..., n are called posterior probabilities (beliefs
updated based on A)

14 / 29



An example

Example

Test T :

▶ Prob. of True positive: P(T = + | covid) = 90%.

▶ Prob. of True negative : P(T = − | healthy) = 95%.

Assume the prevalence of COVID-19 in the population is ≈ 2%. (P(covid) = 2%)

▶ What is P(covid | T = +) for someone at random in the population?

▶ Now consider the test is done on people that have symptoms and we know
that for these people, P(covid) = 50%, what is P(covid | T = +)?
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Motivation

▶ Conditional probability P(A|B) quantifies the effect of event B on another
event A

▶ Intuition: Two events A and B are independent if P(A|B) = P(A)

▶ Applying Bayes’ formula (if P(A) > 0), this would imply that
P(B) = P(AB)/P(A), i.e. P(AB) = P(A)P(B)

Definition
Two events A and B are independent if

P(AB) = P(A)P(B).

Notes:

▶ This only makes sense when the two events are defined on the same
sample space
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Example

Example

Consider an urn with 4 red and 7 green balls.
Sample in order two balls and define the events

A = {first ball is red} B = {second ball is green}

1. If the sampling is with replacement, are A and B independent?

2. If the sampling is without replacement, are A and B independent?

17 / 29



Caution: disjoint vs independent

Do not confound disjoint events and independent events.

For example A and Ac are disjoint,
but 0 = P(A ∩ Ac) ̸= P(A)P(Ac) > 0 for any A s.t. 0 < P(A) < 1.
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Independence

If the fact that B occurs does not change the probability of A, then knowing
that B does not occur should also have no impact on the probability of A.

This is formalized in the proposition below:

Suppose A and B are independent. Then

▶ Ac and B are independent

▶ A and Bc are independent

▶ Ac and Bc are independent

Proof.
We will prove the first result above. We saw in Chapter 1 that
P(B) = P(AcB) + P(AB). Rearranging,

P(AcB) = P(B)− P(AB)

= P(B)− P(A)P(B) A,B independent

= [1− P(A)]P(B) factoring

= P(Ac)P(B). def. of complement

Therefore, A and Bc are independent. The rest are left as practice.
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Mutual independence

For more than two events, we generalize the notion of independence as follows:

Definition
Events A1, . . . ,An are independent (or mutually independent) if for any
collection Ai1 , . . . ,Aik with 2 ≤ k ≤ n, 1 ≤ i1 < . . . < ik ≤ n,

P(Ai1 ∩ . . . ∩ Aik ) = P(Ai1) . . .P(Aik )

Events A1, . . . ,An are pairwise independent if for any i ̸= j ,

P(Ai ∩ Aj) = P(Ai )P(Aj)

▶ Clearly (mutual) independence =⇒ pairwise independence

▶ But the reverse is false

▶ Mutual independence requires that any collection of the variables satisfy
the factorization.
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Mutual independence

Example

Flip a fair coin three times. Let

A = {exactly one tails in the first two flips}
B = {exactly one tails in the last two flips}
C = {exaxctly one tails in the first and last flips}

1. Are A,B,C pairwise independent ?

2. Are A,B,C (mutually) independent?

Solution:

1. Based on our example before, we see that they are pairwise independent.

2. Yet A ∩ B ∩ C = ∅ so

P(A ∩ B ∩ C) ̸= P(A)P(B)P(C) > 0

They are not (mutually) independent.
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Mutual independence

The following proposition simply generalizes the fact that if A and B are
independent then their complements are also independent.

If A1, . . .An are (mutually) independent, then for any collection Ai1 , . . . ,Aik

with 2 ≤ k ≤ n and 1 ≤ i1 < . . . < ik ≤ n, we have that

P(A∗
i1 ∩ . . . ∩ A∗

ik ) = P(A∗
i1) . . .P(A

∗
ik )

where each A∗
i is either Ai or A

c
i .
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Motivation

Consider the example of rolling a die three times.
▶ So far we’ve asked questions like these:

▶ What is the probability of rolling the same number more than once?
▶ What is the probability that the sum of the rolls is at least 10?

▶ What about questions like these:
▶ What is a “typical” die roll?
▶ What die roll would we expect on average if we roll many times?
▶ Suppose this is a carnival game and the prize you win is some function of

the sequence of die rolls. What prize would you expect to win on average?

Random variables can make it easier to handle the first type of question, and
they will enable us to address the second type of question
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Random variables

Definition
A random variable X on a sample space Ω is a function from Ω into the real
numbers, or a real-valued function on Ω:

X : Ω→ R.

▶ Usually denoted by a capital letter

Example

Flip a coin three times. Define X = number of heads.
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Events and random variables

We denote1

{X ∈ B} = {ω ∈ Ω : X (ω) ∈ B}.

This gives us two ways to define an event:

▶ In our previous example, consider the event “the coin comes up heads
once”. We’ve seen that we can define this by which outcomes in Ω meet
this criterion:

{(H,T ,T ), (T ,H,T ), (T ,T ,H)}
▶ We now see that we can also view this as the subset of Ω that is mapped

by X to the real number 1:

{ω ∈ Ω : X (ω) = 1}

Idea: we can measure probabilities in Ω by expressing them as the set of
elements such that the random variable satisfies some equality/inequality

1For those familiar with the following terminology, the preimage in Ω of any subset B of the
codomain (set of possible outputs/values) of a random variable X on Ω is an event.

25 / 29



A note on notation

Let X ,Y be random variables.

Equivalent expressions of “both”:

▶ intersection

▶ P(X < 3,Y = 4) ← comma means “and”

▶ P(X < 3 and Y = 4)

▶ P(X < 3) ∩ P(Y = 4)

Equivalent expressions of “either/or”:

▶ union

▶ P(X < 3 or Y = 4)

▶ P(X < 3) ∪ P(Y = 4)
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Probability distributions and mass functions

Now that we have random variables, we can define the following as well:

Definition
Let X be a random variable.

▶ The probability distribution of X is the collection of probabilities
P{X ∈ B} for sets B ⊆ R.

▶ X is a discrete random variable if ∃ a finite or countably infinite set
{k1, k2, ...} of real numbers such that∑

i

P(X = ki ) = 1.

▶ The probability mass function or pmf of a discrete random variable X is
the function p (or pX ) defined by

p(k) = P(X = k)

for all possible values k of X .
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Example 1: Finding the pmf of a discrete RV

Let’s model daily stock price as a coin flip. Every time the coin comes up heads
(tails), the price increases (decreases) and you earn $1 ($1). Define X as your
net profit or loss after five flips.

▶ What is the set of possible values of X?

▶ Define the probability mass function for X .
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Example 2: Finding the pmf of a discrete RV

Suppose we have the target drawn below; the black numbers along the
horizontal segment are the difference in radii of the circles, and the blue
vertical numbers are the number of points you get if your arrow lands in that
region. Suppose your arrow lands uniformly at random on the target, and
define X to be the number of points you get.

▶ What are the possible values of X (the codomain of X )?

▶ Define the pmf of X . Verify that the probabilities sum to 1.

29 / 29


	Review of Chapter 1
	Conditional probability
	Bayes' formula
	Independence
	Random variables: an introduction

